
-
Previous Article
Asymptotic for the perturbed heavy ball system with vanishing damping term
- EECT Home
- This Issue
- Next Article
Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction
Department of Mathematics, IME-USP, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil |
$δ^{\prime}$ |
$i{\partial _t}u + \partial _x^2u + {\rm{ }}{\gamma ^\prime }(x)u + u{\mkern 1mu} {\rm{Log|}}u|2 = 0,(x,t) \in \mathbb{R} \times \mathbb{R} ,$ |
References:
[1] |
R. Adami and D. Noja, Existence of dynamics for a 1-d NLS equation perturbed with a generalized point defect J. Phys. A Math. Theor. 42 (2009), 495302, 19pp.
doi: 10.1088/1751-8113/42/49/495302. |
[2] |
R. Adami and D. Noja,
Nonlinearity-defect interaction: Symmetry breaking bifurcation in a NLS with δ' impurity, Nanosystems, 2 (2011), 5-19.
|
[3] |
R. Adami and D. Noja,
Stability and symmetry-breaking bifurcation for the ground states of a NLS with a δ' interaction, Comm. Math. Phys., 318 (2013), 247-289.
doi: 10.1007/s00220-012-1597-6. |
[4] |
R. Adami and D. Noja,
Exactly solvable models and bifurcations: The case of the cubic NLS with a δ or a δ' interaction in dimension one, Math. Model. Nat. Phenom., 9 (2014), 1-16.
doi: 10.1051/mmnp/20149501. |
[5] |
R. Adami, D. Noja and N. Visciglia,
Constrained energy minimization and ground states for NLS with point defects, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1155-1188.
doi: 10.3934/dcdsb.2013.18.1155. |
[6] |
S. Albeverio, F. Gesztesy, R. H∅egh-Krohn and H. Holden,
Solvable Models in Quantum Mechanics Springer-Verlag, New York, 1988.
doi: 10.1007/978-3-642-88201-2. |
[7] |
J. Angulo and A. H. Ardila, Stability of standing waves for logarithmic Schrödinger equation with attractive delta potential, Indiana Univ. Math. J., to appear. |
[8] |
A.H. Ardila,
Orbital stability of gausson solutions to logarithmic Schrödinger equations, Electron. J. Differential Equations, 335 (2016), 1-9.
|
[9] |
I. Bialynicki-Birula and J. Mycielski,
Nonlinear wave mechanics, Ann. Phys, 100 (1976), 62-93.
doi: 10.1016/0003-4916(76)90057-9. |
[10] |
H. Brézis and E. Lieb,
A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999. |
[11] |
T. Cazenave,
Stable solutions of the logarithmic Schrödinger equation, Nonlinear. Anal., T.M.A., 7 (1983), 1127-1140.
doi: 10.1016/0362-546X(83)90022-6. |
[12] |
T. Cazenave,
Semilinear Schrödinger Equations Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
doi: 10.1090/cln/010. |
[13] |
T. Cazenave and P. Lions,
Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.
doi: 10.1007/BF01403504. |
[14] |
R. Fukuizumi and L. Jeanjean,
Stability of standing waves for a nonlinear Schrödinger equation with a repulsive {D}irac delta potential, Discrete Contin. Dyn. Syst., 21 (2008), 121-136.
doi: 10.3934/dcds.2008.21.121. |
[15] |
R. Fukuizumi, M. Ohta and T. Ozawa,
Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 837-845.
doi: 10.1016/j.anihpc.2007.03.004. |
[16] |
R. Fukuizumi and A. Sacchetti,
Bifurcation and stability for nonlinear Schrödinger equations with double well potential in the semiclassical limit, J. Stat. Phys., 145 (2011), 1546-1594.
doi: 10.1007/s10955-011-0356-y. |
[17] |
A. Haraux,
Nonlinear Evolution Equations: Global Behavior of Solutions vol. 841 of Lecture Notes in Math., Springer-Verlag, Heidelberg, 1981. |
[18] |
E. Hefter,
Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev, 32 (1985), 1201-1204.
doi: 10.1103/PhysRevA.32.1201. |
[19] |
R.K. Jackson and M. Weinstein,
Geometric analysis of bifurcation and symmetry breaking in a {G}ross-{P}itaevskii equation, J. Stat. Phys., 116 (2004), 881-905.
doi: 10.1023/B:JOSS.0000037238.94034.75. |
[20] |
M. Kaminaga and M. Ohta,
Stability of standing waves for nonlinear {S}chrödinger equation with attractive delta potential and repulsive nonlinearity, Saitama Math. J., 26 (2009), 39-48.
|
[21] |
C.M. Khalique and A. Biswas,
Gaussian soliton solution to nonlinear Schrödinger's equation with log law nonlinearity, International Journal of Physical Sciences, 5 (2010), 280-282.
|
[22] |
E.W. Kirr, P. Kevrekidis and D. Pelinovsky,
Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials, Comm. Math. Phys., 308 (2011), 795-844.
doi: 10.1007/s00220-011-1361-3. |
[23] |
A. Kostenko and M. Malamud,
Spectral theory of semibounded Schrödinger operators with $δ^{\prime}$-interactions, Ann. Henri Poincaré, 15 (2014), 501-541.
doi: 10.1007/s00023-013-0245-9. |
[24] |
S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim and Y. Sivan,
Instability of bound states of a nonlinear Schrödinger equation with a dirac potential, Phys. D, 237 (2008), 1103-1128.
doi: 10.1016/j.physd.2007.12.004. |
[25] |
E. Lieb and M. Loss,
Analysis 2nd edition, vol. ~14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014. |
[26] |
A. ~Sacchetti, Universal critical power for nonlinear Schrödinger equations with symmetric double well potential Phys. Rev. Lett. 103 (2009), 194101.
doi: 10.1103/PhysRevLett.103.194101. |
[27] |
K. Schmüdgen,
Unbounded Self-adjoint Operators on Hilbert Space vol. 265 of Graduate Texts in Mathematics, Springer, Dordrecht, 2012.
doi: 10.1007/978-94-007-4753-1. |
[28] |
J. Vázquez,
A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim, 12 (1984), 191-202.
doi: 10.1007/BF01449041. |
[29] |
K. Zloshchastiev,
Logarithmic nonlinearity in theories of quantum gravity: {O}rigin of time and observational consequences, Grav. Cosmol., 16 (2010), 288-297.
doi: 10.1134/S0202289310040067. |
show all references
References:
[1] |
R. Adami and D. Noja, Existence of dynamics for a 1-d NLS equation perturbed with a generalized point defect J. Phys. A Math. Theor. 42 (2009), 495302, 19pp.
doi: 10.1088/1751-8113/42/49/495302. |
[2] |
R. Adami and D. Noja,
Nonlinearity-defect interaction: Symmetry breaking bifurcation in a NLS with δ' impurity, Nanosystems, 2 (2011), 5-19.
|
[3] |
R. Adami and D. Noja,
Stability and symmetry-breaking bifurcation for the ground states of a NLS with a δ' interaction, Comm. Math. Phys., 318 (2013), 247-289.
doi: 10.1007/s00220-012-1597-6. |
[4] |
R. Adami and D. Noja,
Exactly solvable models and bifurcations: The case of the cubic NLS with a δ or a δ' interaction in dimension one, Math. Model. Nat. Phenom., 9 (2014), 1-16.
doi: 10.1051/mmnp/20149501. |
[5] |
R. Adami, D. Noja and N. Visciglia,
Constrained energy minimization and ground states for NLS with point defects, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1155-1188.
doi: 10.3934/dcdsb.2013.18.1155. |
[6] |
S. Albeverio, F. Gesztesy, R. H∅egh-Krohn and H. Holden,
Solvable Models in Quantum Mechanics Springer-Verlag, New York, 1988.
doi: 10.1007/978-3-642-88201-2. |
[7] |
J. Angulo and A. H. Ardila, Stability of standing waves for logarithmic Schrödinger equation with attractive delta potential, Indiana Univ. Math. J., to appear. |
[8] |
A.H. Ardila,
Orbital stability of gausson solutions to logarithmic Schrödinger equations, Electron. J. Differential Equations, 335 (2016), 1-9.
|
[9] |
I. Bialynicki-Birula and J. Mycielski,
Nonlinear wave mechanics, Ann. Phys, 100 (1976), 62-93.
doi: 10.1016/0003-4916(76)90057-9. |
[10] |
H. Brézis and E. Lieb,
A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.2307/2044999. |
[11] |
T. Cazenave,
Stable solutions of the logarithmic Schrödinger equation, Nonlinear. Anal., T.M.A., 7 (1983), 1127-1140.
doi: 10.1016/0362-546X(83)90022-6. |
[12] |
T. Cazenave,
Semilinear Schrödinger Equations Courant Lecture Notes in Mathematics, 10, American Mathematical Society, Courant Institute of Mathematical Sciences, 2003.
doi: 10.1090/cln/010. |
[13] |
T. Cazenave and P. Lions,
Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys., 85 (1982), 549-561.
doi: 10.1007/BF01403504. |
[14] |
R. Fukuizumi and L. Jeanjean,
Stability of standing waves for a nonlinear Schrödinger equation with a repulsive {D}irac delta potential, Discrete Contin. Dyn. Syst., 21 (2008), 121-136.
doi: 10.3934/dcds.2008.21.121. |
[15] |
R. Fukuizumi, M. Ohta and T. Ozawa,
Nonlinear Schrödinger equation with a point defect, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 837-845.
doi: 10.1016/j.anihpc.2007.03.004. |
[16] |
R. Fukuizumi and A. Sacchetti,
Bifurcation and stability for nonlinear Schrödinger equations with double well potential in the semiclassical limit, J. Stat. Phys., 145 (2011), 1546-1594.
doi: 10.1007/s10955-011-0356-y. |
[17] |
A. Haraux,
Nonlinear Evolution Equations: Global Behavior of Solutions vol. 841 of Lecture Notes in Math., Springer-Verlag, Heidelberg, 1981. |
[18] |
E. Hefter,
Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev, 32 (1985), 1201-1204.
doi: 10.1103/PhysRevA.32.1201. |
[19] |
R.K. Jackson and M. Weinstein,
Geometric analysis of bifurcation and symmetry breaking in a {G}ross-{P}itaevskii equation, J. Stat. Phys., 116 (2004), 881-905.
doi: 10.1023/B:JOSS.0000037238.94034.75. |
[20] |
M. Kaminaga and M. Ohta,
Stability of standing waves for nonlinear {S}chrödinger equation with attractive delta potential and repulsive nonlinearity, Saitama Math. J., 26 (2009), 39-48.
|
[21] |
C.M. Khalique and A. Biswas,
Gaussian soliton solution to nonlinear Schrödinger's equation with log law nonlinearity, International Journal of Physical Sciences, 5 (2010), 280-282.
|
[22] |
E.W. Kirr, P. Kevrekidis and D. Pelinovsky,
Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials, Comm. Math. Phys., 308 (2011), 795-844.
doi: 10.1007/s00220-011-1361-3. |
[23] |
A. Kostenko and M. Malamud,
Spectral theory of semibounded Schrödinger operators with $δ^{\prime}$-interactions, Ann. Henri Poincaré, 15 (2014), 501-541.
doi: 10.1007/s00023-013-0245-9. |
[24] |
S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim and Y. Sivan,
Instability of bound states of a nonlinear Schrödinger equation with a dirac potential, Phys. D, 237 (2008), 1103-1128.
doi: 10.1016/j.physd.2007.12.004. |
[25] |
E. Lieb and M. Loss,
Analysis 2nd edition, vol. ~14 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2001.
doi: 10.1090/gsm/014. |
[26] |
A. ~Sacchetti, Universal critical power for nonlinear Schrödinger equations with symmetric double well potential Phys. Rev. Lett. 103 (2009), 194101.
doi: 10.1103/PhysRevLett.103.194101. |
[27] |
K. Schmüdgen,
Unbounded Self-adjoint Operators on Hilbert Space vol. 265 of Graduate Texts in Mathematics, Springer, Dordrecht, 2012.
doi: 10.1007/978-94-007-4753-1. |
[28] |
J. Vázquez,
A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim, 12 (1984), 191-202.
doi: 10.1007/BF01449041. |
[29] |
K. Zloshchastiev,
Logarithmic nonlinearity in theories of quantum gravity: {O}rigin of time and observational consequences, Grav. Cosmol., 16 (2010), 288-297.
doi: 10.1134/S0202289310040067. |

[1] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[2] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[3] |
Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395 |
[4] |
Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2805-2816. doi: 10.3934/jimo.2020095 |
[5] |
Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067 |
[6] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[7] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[8] |
Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136 |
[9] |
Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005 |
[10] |
Chang-Lin Xiang. Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5789-5800. doi: 10.3934/dcds.2016054 |
[11] |
Rong Cheng, Jun Wang. Existence of ground states for Schrödinger-Poisson system with nonperiodic potentials. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021317 |
[12] |
Claudianor O. Alves, Chao Ji. Multiple positive solutions for a Schrödinger logarithmic equation. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2671-2685. doi: 10.3934/dcds.2020145 |
[13] |
Yong Luo, Shu Zhang. Concentration behavior of ground states for $ L^2 $-critical Schrödinger Equation with a spatially decaying nonlinearity. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1481-1504. doi: 10.3934/cpaa.2022026 |
[14] |
Daniele Garrisi, Vladimir Georgiev. Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4309-4328. doi: 10.3934/dcds.2017184 |
[15] |
Jaime Angulo Pava, César A. Hernández Melo. On stability properties of the Cubic-Quintic Schródinger equation with $\delta$-point interaction. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2093-2116. doi: 10.3934/cpaa.2019094 |
[16] |
Guillaume Ferriere. The focusing logarithmic Schrödinger equation: Analysis of breathers and nonlinear superposition. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6247-6274. doi: 10.3934/dcds.2020277 |
[17] |
Panagiotis Paraschis, Georgios E. Zouraris. On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022074 |
[18] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure and Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[19] |
Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117 |
[20] |
Eugenio Montefusco, Benedetta Pellacci, Marco Squassina. Energy convexity estimates for non-degenerate ground states of nonlinear 1D Schrödinger systems. Communications on Pure and Applied Analysis, 2010, 9 (4) : 867-884. doi: 10.3934/cpaa.2010.9.867 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]