A 3D-2D dimension reduction for a nonhomogeneous constrained energy is performed in the realm of $Γ$-convergence, and two-scale convergence for slender domains, providing an integral representation for the limit functional. Applications to supremal functionals are also given.
Citation: |
[1] |
E. Acerbi, G. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string, Elasticity J., 25 (1991), 137-148.
doi: 10.1007/BF00042462.![]() ![]() ![]() |
[2] |
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.
doi: 10.1137/0523084.![]() ![]() ![]() |
[3] |
J.-F. Babadjian, F. Prinari and E. Zappale, Dimensional reduction for supremal functionals, Discrete Contin. Dyn. Syst., 32 (2012), 1503-1535.
doi: 10.3934/dcds.2012.32.1503.![]() ![]() ![]() |
[4] |
E. N. Barron, R. R. Jensen and C. Y. Wang, Lower semicontinuity of L1 functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 495-517.
doi: 10.1016/S0294-1449(01)00070-1.![]() ![]() ![]() |
[5] |
A. Braides, I. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., 49 (2000), 1367-1404.
doi: 10.1512/iumj.2000.49.1822.![]() ![]() ![]() |
[6] |
A. Briani, F. Prinari and A. Garroni, Homogenization of L1 functionals, Math. Models Methods Appl. Sci., 14 (2004), 1784.
doi: 10.1142/S0218202504003817.![]() ![]() ![]() |
[7] |
L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations. Representation, Relaxation and Homogenization, Chapman and Hall/CRC Monogr. Surv. Pure Appl. Math. 125, Chapman and Hall/CRC Boca Raton, FL, 2001.
![]() ![]() |
[8] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977.
![]() ![]() |
[9] |
D. Cioranescu, A. Damlamian and R. De Arcangelis, Homogenization of integrals with pointwise gradient constraints via the periodic unfolding method, Ric. Mat., 44 (2006), 31-53.
doi: 10.1007/s11587-006-0003-0.![]() ![]() ![]() |
[10] |
D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.
doi: 10.1137/080713148.![]() ![]() ![]() |
[11] |
G. Dal Maso, An Introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1983.
doi: 10.1007/978-1-4612-0327-8.![]() ![]() ![]() |
[12] |
A. Davini and M. Ponsiglione, Homogenization of two-phase metrics and applications, J. Anal. Math., 103 (2007), 157-196.
doi: 10.1007/s11854-008-0005-9.![]() ![]() ![]() |
[13] |
C. Kreisbeck and S. Kroemer, Heterogeneous thin films: Combining homogenization and dimension reduction with directors, SIAM J. Math. Anal., 48 (2016), 785-820.
doi: 10.1137/15M1032557.![]() ![]() ![]() |
[14] |
H. Le Dret and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 548-578.
![]() ![]() |
[15] |
S. Neukamm, Homogenization, Linearization and Dimension Reduction in Elasticity with Variational Methods, Dissertation Technische Universität München, 2010.
![]() |
[16] |
A. M. Ribeiro and E. Zappale, Existence of minimizers for nonlevel convex supremal functionals, SIAM J. Control Optim., 52 (2014), 3341-3370.
doi: 10.1137/13094390X.![]() ![]() ![]() |
[17] |
E. Zappale, A remark on dimension reduction for supremal functionals: The case with convex domains, Differential Integral Equations, 26 (2013), 1077-1090.
![]() ![]() |