June  2017, 6(2): 299-318. doi: 10.3934/eect.2017016

A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains

Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, via Giovanni Paolo Ⅱ, 132,84084 Fisciano (SA), Italy

Received  December 2016 Revised  January 2017 Published  April 2017

A 3D-2D dimension reduction for a nonhomogeneous constrained energy is performed in the realm of $Γ$-convergence, and two-scale convergence for slender domains, providing an integral representation for the limit functional. Applications to supremal functionals are also given.

Citation: Elvira Zappale. A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains. Evolution Equations and Control Theory, 2017, 6 (2) : 299-318. doi: 10.3934/eect.2017016
References:
[1]

E. AcerbiG. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string, Elasticity J., 25 (1991), 137-148.  doi: 10.1007/BF00042462.

[2]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.

[3]

J.-F. BabadjianF. Prinari and E. Zappale, Dimensional reduction for supremal functionals, Discrete Contin. Dyn. Syst., 32 (2012), 1503-1535.  doi: 10.3934/dcds.2012.32.1503.

[4]

E. N. BarronR. R. Jensen and C. Y. Wang, Lower semicontinuity of L1 functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 495-517.  doi: 10.1016/S0294-1449(01)00070-1.

[5]

A. BraidesI. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., 49 (2000), 1367-1404.  doi: 10.1512/iumj.2000.49.1822.

[6]

A. BrianiF. Prinari and A. Garroni, Homogenization of L1 functionals, Math. Models Methods Appl. Sci., 14 (2004), 1784.  doi: 10.1142/S0218202504003817.

[7]

L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations. Representation, Relaxation and Homogenization, Chapman and Hall/CRC Monogr. Surv. Pure Appl. Math. 125, Chapman and Hall/CRC Boca Raton, FL, 2001.

[8]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977.

[9]

D. CioranescuA. Damlamian and R. De Arcangelis, Homogenization of integrals with pointwise gradient constraints via the periodic unfolding method, Ric. Mat., 44 (2006), 31-53.  doi: 10.1007/s11587-006-0003-0.

[10]

D. CioranescuA. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.  doi: 10.1137/080713148.

[11]

G. Dal Maso, An Introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1983. doi: 10.1007/978-1-4612-0327-8.

[12]

A. Davini and M. Ponsiglione, Homogenization of two-phase metrics and applications, J. Anal. Math., 103 (2007), 157-196.  doi: 10.1007/s11854-008-0005-9.

[13]

C. Kreisbeck and S. Kroemer, Heterogeneous thin films: Combining homogenization and dimension reduction with directors, SIAM J. Math. Anal., 48 (2016), 785-820.  doi: 10.1137/15M1032557.

[14]

H. Le Dret and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 548-578. 

[15]

S. Neukamm, Homogenization, Linearization and Dimension Reduction in Elasticity with Variational Methods, Dissertation Technische Universität München, 2010.

[16]

A. M. Ribeiro and E. Zappale, Existence of minimizers for nonlevel convex supremal functionals, SIAM J. Control Optim., 52 (2014), 3341-3370.  doi: 10.1137/13094390X.

[17]

E. Zappale, A remark on dimension reduction for supremal functionals: The case with convex domains, Differential Integral Equations, 26 (2013), 1077-1090. 

show all references

References:
[1]

E. AcerbiG. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string, Elasticity J., 25 (1991), 137-148.  doi: 10.1007/BF00042462.

[2]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518.  doi: 10.1137/0523084.

[3]

J.-F. BabadjianF. Prinari and E. Zappale, Dimensional reduction for supremal functionals, Discrete Contin. Dyn. Syst., 32 (2012), 1503-1535.  doi: 10.3934/dcds.2012.32.1503.

[4]

E. N. BarronR. R. Jensen and C. Y. Wang, Lower semicontinuity of L1 functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 495-517.  doi: 10.1016/S0294-1449(01)00070-1.

[5]

A. BraidesI. Fonseca and G. Francfort, 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., 49 (2000), 1367-1404.  doi: 10.1512/iumj.2000.49.1822.

[6]

A. BrianiF. Prinari and A. Garroni, Homogenization of L1 functionals, Math. Models Methods Appl. Sci., 14 (2004), 1784.  doi: 10.1142/S0218202504003817.

[7]

L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations. Representation, Relaxation and Homogenization, Chapman and Hall/CRC Monogr. Surv. Pure Appl. Math. 125, Chapman and Hall/CRC Boca Raton, FL, 2001.

[8]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977.

[9]

D. CioranescuA. Damlamian and R. De Arcangelis, Homogenization of integrals with pointwise gradient constraints via the periodic unfolding method, Ric. Mat., 44 (2006), 31-53.  doi: 10.1007/s11587-006-0003-0.

[10]

D. CioranescuA. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620.  doi: 10.1137/080713148.

[11]

G. Dal Maso, An Introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1983. doi: 10.1007/978-1-4612-0327-8.

[12]

A. Davini and M. Ponsiglione, Homogenization of two-phase metrics and applications, J. Anal. Math., 103 (2007), 157-196.  doi: 10.1007/s11854-008-0005-9.

[13]

C. Kreisbeck and S. Kroemer, Heterogeneous thin films: Combining homogenization and dimension reduction with directors, SIAM J. Math. Anal., 48 (2016), 785-820.  doi: 10.1137/15M1032557.

[14]

H. Le Dret and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 548-578. 

[15]

S. Neukamm, Homogenization, Linearization and Dimension Reduction in Elasticity with Variational Methods, Dissertation Technische Universität München, 2010.

[16]

A. M. Ribeiro and E. Zappale, Existence of minimizers for nonlevel convex supremal functionals, SIAM J. Control Optim., 52 (2014), 3341-3370.  doi: 10.1137/13094390X.

[17]

E. Zappale, A remark on dimension reduction for supremal functionals: The case with convex domains, Differential Integral Equations, 26 (2013), 1077-1090. 

[1]

Jean-François Babadjian, Francesca Prinari, Elvira Zappale. Dimensional reduction for supremal functionals. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1503-1535. doi: 10.3934/dcds.2012.32.1503

[2]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks and Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189

[3]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations and Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[4]

Panpan Ren, Shen Wang. Moderate deviation principles for unbounded additive functionals of distribution dependent SDEs. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3129-3142. doi: 10.3934/cpaa.2021099

[5]

Guillaume Bal, Olivier Pinaud, Lenya Ryzhik. On the stability of some imaging functionals. Inverse Problems and Imaging, 2016, 10 (3) : 585-616. doi: 10.3934/ipi.2016013

[6]

P. Di Gironimo, L. D’Onofrio. On the regularity of minimizers to degenerate functionals. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1311-1318. doi: 10.3934/cpaa.2010.9.1311

[7]

Sandro Zagatti. Existence of minimizers for one-dimensional vectorial non-semicontinuous functionals with second order lagrangian. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 2005-2025. doi: 10.3934/dcds.2021181

[8]

Victor Berdichevsky. Distribution of minimum values of stochastic functionals. Networks and Heterogeneous Media, 2008, 3 (3) : 437-460. doi: 10.3934/nhm.2008.3.437

[9]

Guillaume Bal, Chenxi Guo, Francçois Monard. Linearized internal functionals for anisotropic conductivities. Inverse Problems and Imaging, 2014, 8 (1) : 1-22. doi: 10.3934/ipi.2014.8.1

[10]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[11]

Menita Carozza, Gioconda Moscariello, Antonia Passarelli. Higher integrability for minimizers of anisotropic functionals. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 43-55. doi: 10.3934/dcdsb.2009.11.43

[12]

Patrick Cummings, C. Eugene Wayne. Modified energy functionals and the NLS approximation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1295-1321. doi: 10.3934/dcds.2017054

[13]

Nassif Ghoussoub. Superposition of selfdual functionals in non-homogeneous boundary value problems and differential systems. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 187-220. doi: 10.3934/dcds.2008.21.187

[14]

Annibale Magni, Matteo Novaga. A note on non lower semicontinuous perimeter functionals on partitions. Networks and Heterogeneous Media, 2016, 11 (3) : 501-508. doi: 10.3934/nhm.2016006

[15]

Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure and Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75

[16]

Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic and Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857

[17]

Yoji Otani, Tsuyoshi Kajiwara, Toru Sasaki. Lyapunov functionals for multistrain models with infinite delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 507-536. doi: 10.3934/dcdsb.2017025

[18]

Guangcun Lu. The splitting lemmas for nonsmooth functionals on Hilbert spaces I. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2939-2990. doi: 10.3934/dcds.2013.33.2939

[19]

Kongzhi Li, Xiaoping Xue. The Łojasiewicz inequality for free energy functionals on a graph. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022066

[20]

Luigi Ambrosio, Camillo Brena. Stability of a class of action functionals depending on convex functions. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022055

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (79)
  • HTML views (55)
  • Cited by (1)

Other articles
by authors

[Back to Top]