\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sensitivity analysis in set-valued optimization under strictly minimal efficiency

  • * Corresponding author: pzhjearya@gmail.com

    * Corresponding author: pzhjearya@gmail.com 
The authors are supported by the Natural Science Foundation of China No. 71471140, Natural science program of Guizhou Provincial Department of Education[2015]456 and Collaborative Fund of the Science and Teachnology Department of Guizhou Province[2014]7490.
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, the behavior of the perturbation map is analyzed quantitatively by virtue of contingent derivatives and generalized contingent epiderivatives for the set-valued maps under strictly minimal efficiency. The purpose of this paper is to provide some well-known results concerning sensitivity analysis by applying a separation theorem for convex sets. When the results regress to multiobjective optimization, some related conclusions are obtained in a multiobjective programming problem.

    Mathematics Subject Classification: Primary: 90C29, 46G05; Secondary: 49Q12.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
    [2] J. M. Borwein and D. Zhuang, Super efficiency in vector optimization, Transactions of the American Mathematical Society, 338 (1993), 105-122.  doi: 10.1090/S0002-9947-1993-1098432-5.
    [3] G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems, Mathematical Methods of Operations Research, 48 (1998), 187-200.  doi: 10.1007/s001860050021.
    [4] Y. H. Cheng and W. T. Fu, Strong efficiency in a locally convex space, Mathematical Methods of Operations Research, 50 (1999), 373-384.  doi: 10.1007/s001860050076.
    [5] A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, 1983.
    [6] W. T. Fu and X. Q. Chen, On approximation families of cones and strictly efficient points, Acta Mathematica Sinica, 40 (1997), 933-938. 
    [7] W. T. Fu and Y. H. Cheng, On the strict efficiency in a locally convex space, Journal of Systems Science and Mathematical Sciences, 12 (1999), 40-44. 
    [8] X. H. GongH. B. Dong and S. Y. Wang, Optimality conditions for proper efficient solutions of vector set-valued optimization, Journal of Mathematical Analysis and Applications, 284 (2003), 332-350.  doi: 10.1016/S0022-247X(03)00360-3.
    [9] Y. D. Hu and C. Ling, Connectedness of cone superefficient point sets in locally convex topological vector spaces, Journal of Optimization Theory and Applications, 107 (2000), 433-446.  doi: 10.1023/A:1026412918497.
    [10] J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer, Berlin Heidelberg, 2004. doi: 10.1007/978-3-540-24828-6.
    [11] S. J. Li, Sensitivity and stability for contingent derivative in multiobjective optimization, Mathematica Applicata, 11 (1998), 49-53. 
    [12] Z. F. Li and S. Y. Wang, Connectedness of super efficient sets in vector optimization of set-valued maps, Mathematical Methods of Operations Research, 48 (1998), 207-217.  doi: 10.1007/s001860050023.
    [13] R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming, Mathematical Programming Study, 17 (1982), 28-66. 
    [14] W. D. Rong and Y. N. Wu, $\varepsilon -$weak minimal solution of vector optimization problems with set-valued maps, Journal of Optimization Theory and Applications, 106 (2000), 569-579.  doi: 10.1023/A:1004657412928.
    [15] B. H. Sheng and S. Y. Liu, Sensitivity analysis in vector optimization under Benson proper efficiency, Journal of Mathematical Research & Exposition, 22 (2002), 407-412. 
    [16] D. S. Shi, Contingent derivative of the perturbation map in multiobjective optimization, Journal of Optimization Theory and Applications, 70 (1991), 385-396.  doi: 10.1007/BF00940634.
    [17] D. S. Shi, Sensitivity analysis in convex vector optimization, Journal of Optimization Theory and Applications, 77 (1993), 145-159.  doi: 10.1007/BF00940783.
    [18] T. Tanino, Sensitivity analysis in multiobjective optimization, Journal of Optimization Theory and Applications, 56 (1988), 479-499.  doi: 10.1007/BF00939554.
    [19] T. Tanino, Stability and sensitivity analysis in convex vector optimization, SIAM Journal on Control and Optimization, 26 (1988), 521-536.  doi: 10.1137/0326031.
  • 加载中
SHARE

Article Metrics

HTML views(900) PDF downloads(221) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return