-
Previous Article
Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions
- EECT Home
- This Issue
-
Next Article
Some problems of guaranteed control of the Schlögl and FitzHugh-Nagumo systems
Stability and instability of solutions to the drift-diffusion system
1. | Tohoku University, Mathematical Institute, Sendai 980-8578, Japan |
2. | Mathematical Institute, Tohoku University, Sendai 980-8578, Japan |
We consider the large time behavior of a solution to a drift-diffusion equation for degenerate and non-degenerate type. We show an instability and uniform unbounded estimate for the semi-linear case and uniform bound and convergence to the stationary solution for the case of mass critical degenerate case for higher space of dimension bigger than two.
References:
[1] |
P. Biler,
Existence and nonexistence of solutions for a model of gravitational interaction of particles, Ⅲ, Colloq. Math., 68 (1995), 229-239.
|
[2] |
P. Biler and T. Nadzieja,
Existence and nonexistence of solutions for a model of gravitational interactions of particles Ⅰ, Colloq. Math., 66 (1994), 319-334.
|
[3] |
A. Blanchet, J. A. Carrillo and P. Laurençot,
Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.
doi: 10.1007/s00526-008-0200-7. |
[4] |
V. Calvez, L. Corrias and M. Ebde,
Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Partial Differential Equations, 37 (2012), 561-584.
doi: 10.1080/03605302.2012.655824. |
[5] |
L. Corrias, B. Perthame and H. Zaag,
Global solutions of some chemotaxis and angiogenesis system in hight space dimensions, Milan J. Math., 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x. |
[6] |
E. Feireisl and P. Laurençot,
Non-isothermal Smoluchowski-Poisson equations as a singular limit of the Navier-Stokes-Fourier-Poisson system, J. Math. Pures Appl., 88 (2007), 325-349.
doi: 10.1016/j.matpur.2007.07.002. |
[7] |
A. Kimijima, K. Nakagawa and T. Ogawa,
Threshold of global behavior of solutions to a degenerate drift-diffusion system in between two critical exponents, Calc. Var. Partial Differential Equations, 53 (2015), 441-472.
doi: 10.1007/s00526-014-0755-4. |
[8] |
T. Kobayashi and T. Ogawa,
Fluid mechanical approximation to the degenerated drift-diffusion and chemotaxis equations in barotropic model, Indiana Univ. Math. J., 62 (2013), 1021-1054.
doi: 10.1512/iumj.2013.62.5017. |
[9] |
M. Kurokiba and T. Ogawa,
Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differential Integral Equations, 16 (2003), 427-452.
|
[10] |
M. Kurokiba and T. Ogawa,
Finite time blow up for a solution to system of the drift-diffusion equations in higher dimensions, Math. Z., 284 (2016), 231-253.
doi: 10.1007/s00209-016-1654-5. |
[11] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
|
[12] |
T. Nagai,
Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.
|
[13] |
T. Nagai,
Blow up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.
|
[14] |
T. Nagai and T. Ogawa,
Global existence of solutions to a parabolic-elliptic system of drift-diffusion type in $\mathbb{R}^2$, Funkcial. Ekvac., 59 (2016), 67-112.
doi: 10.1619/fesi.59.67. |
[15] |
T. Ogawa,
Decay and asymptotic behavior of a solution of the Keller-Segel system of degenerate and nondegenerate type, Banach Center Publ., 74 (2006), 161-184.
doi: 10.4064/bc74-0-10. |
[16] |
T. Ogawa,
Asymptotic stability of a decaying solution to the Keller-Segel system of degenerate type, Differential Integral Equations, 21 (2008), 1113-1154.
|
[17] |
T. Ogawa and H. Wakui,
Non-uniform bound and finite time blow up for solutions to a drift-diffusion equation in higher dimensions, Anal. Appl. (Singap.), 14 (2016), 145-183.
doi: 10.1142/S0219530515400060. |
[18] |
T. Suzuki and R. Takahashi,
Degenerate parabolic equation with critical exponent derived from the kinetic theory, Ⅰ, Generation of the weak solution, Adv. Differential Equations, 14 (2009), 433-476.
|
[19] |
T. Suzuki and R. Takahashi,
Degenerate parabolic equation with critical exponent derived from the kinetic theory, Ⅱ, Blow-up threshold, Differential Integral Equations, 22 (2009), 1153-1172.
|
[20] |
H. Wakui, Asymptotic behavior of a weak solution to a degenerate drift-diffusion equation, Master course thesis, Tohoku University, 2012. |
show all references
References:
[1] |
P. Biler,
Existence and nonexistence of solutions for a model of gravitational interaction of particles, Ⅲ, Colloq. Math., 68 (1995), 229-239.
|
[2] |
P. Biler and T. Nadzieja,
Existence and nonexistence of solutions for a model of gravitational interactions of particles Ⅰ, Colloq. Math., 66 (1994), 319-334.
|
[3] |
A. Blanchet, J. A. Carrillo and P. Laurençot,
Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.
doi: 10.1007/s00526-008-0200-7. |
[4] |
V. Calvez, L. Corrias and M. Ebde,
Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension, Comm. Partial Differential Equations, 37 (2012), 561-584.
doi: 10.1080/03605302.2012.655824. |
[5] |
L. Corrias, B. Perthame and H. Zaag,
Global solutions of some chemotaxis and angiogenesis system in hight space dimensions, Milan J. Math., 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x. |
[6] |
E. Feireisl and P. Laurençot,
Non-isothermal Smoluchowski-Poisson equations as a singular limit of the Navier-Stokes-Fourier-Poisson system, J. Math. Pures Appl., 88 (2007), 325-349.
doi: 10.1016/j.matpur.2007.07.002. |
[7] |
A. Kimijima, K. Nakagawa and T. Ogawa,
Threshold of global behavior of solutions to a degenerate drift-diffusion system in between two critical exponents, Calc. Var. Partial Differential Equations, 53 (2015), 441-472.
doi: 10.1007/s00526-014-0755-4. |
[8] |
T. Kobayashi and T. Ogawa,
Fluid mechanical approximation to the degenerated drift-diffusion and chemotaxis equations in barotropic model, Indiana Univ. Math. J., 62 (2013), 1021-1054.
doi: 10.1512/iumj.2013.62.5017. |
[9] |
M. Kurokiba and T. Ogawa,
Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differential Integral Equations, 16 (2003), 427-452.
|
[10] |
M. Kurokiba and T. Ogawa,
Finite time blow up for a solution to system of the drift-diffusion equations in higher dimensions, Math. Z., 284 (2016), 231-253.
doi: 10.1007/s00209-016-1654-5. |
[11] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
|
[12] |
T. Nagai,
Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), 581-601.
|
[13] |
T. Nagai,
Blow up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.
|
[14] |
T. Nagai and T. Ogawa,
Global existence of solutions to a parabolic-elliptic system of drift-diffusion type in $\mathbb{R}^2$, Funkcial. Ekvac., 59 (2016), 67-112.
doi: 10.1619/fesi.59.67. |
[15] |
T. Ogawa,
Decay and asymptotic behavior of a solution of the Keller-Segel system of degenerate and nondegenerate type, Banach Center Publ., 74 (2006), 161-184.
doi: 10.4064/bc74-0-10. |
[16] |
T. Ogawa,
Asymptotic stability of a decaying solution to the Keller-Segel system of degenerate type, Differential Integral Equations, 21 (2008), 1113-1154.
|
[17] |
T. Ogawa and H. Wakui,
Non-uniform bound and finite time blow up for solutions to a drift-diffusion equation in higher dimensions, Anal. Appl. (Singap.), 14 (2016), 145-183.
doi: 10.1142/S0219530515400060. |
[18] |
T. Suzuki and R. Takahashi,
Degenerate parabolic equation with critical exponent derived from the kinetic theory, Ⅰ, Generation of the weak solution, Adv. Differential Equations, 14 (2009), 433-476.
|
[19] |
T. Suzuki and R. Takahashi,
Degenerate parabolic equation with critical exponent derived from the kinetic theory, Ⅱ, Blow-up threshold, Differential Integral Equations, 22 (2009), 1153-1172.
|
[20] |
H. Wakui, Asymptotic behavior of a weak solution to a degenerate drift-diffusion equation, Master course thesis, Tohoku University, 2012. |
[1] |
Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure and Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243 |
[2] |
Xiaoqiang Dai, Chao Yang, Shaobin Huang, Tao Yu, Yuanran Zhu. Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems. Electronic Research Archive, 2020, 28 (1) : 91-102. doi: 10.3934/era.2020006 |
[3] |
Michel Pierre, Didier Schmitt. Examples of finite time blow up in mass dissipative reaction-diffusion systems with superquadratic growth. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022039 |
[4] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[5] |
Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022075 |
[6] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[7] |
T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875 |
[8] |
Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558 |
[9] |
Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381 |
[10] |
Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure and Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97 |
[11] |
José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43 |
[12] |
Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299 |
[13] |
Youshan Tao, Michael Winkler. Boundedness vs.blow-up in a two-species chemotaxis system with two chemicals. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3165-3183. doi: 10.3934/dcdsb.2015.20.3165 |
[14] |
Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182 |
[15] |
Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225 |
[16] |
Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134 |
[17] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[18] |
Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065 |
[19] |
Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569 |
[20] |
Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]