Self-similar solutions to nonlinear Dirac systems (1) and (2) are constructed. As an application, we obtain nonuniqueness of strong solution in super-critical space $C([0, T]; H^{s}(\Bbb{R}))$ $(s<0)$ to the system (1) which is $L^2(\Bbb{R})$ scaling critical equations. Therefore the well-posedness theory breaks down in Sobolev spaces of negative order.
Citation: |
D. Agueev
and D. Pelinovsky
, Modeling of wave resonances in low-contrast photonic crystals, SIAM J. Appl. Math., 65 (2005)
, 1101-1129.
doi: 10.1137/040606053.![]() ![]() ![]() |
|
T. Candy
, Global existence for an $L^2$ critical nonlinear Dirac equation in one dimension, Adv. Differential Equations, 16 (2011)
, 643-666.
![]() ![]() |
|
M. Christ, Nonuniqueness of weak solutions of the nonlinear Schrödinger equation, preprint, https://arxiv.org/abs/math/0503366.
![]() |
|
V. Delgado
, Global solutions of the Cauchy problem for the (classical) coupled Maxwell-Dirac and other nonlinear Dirac equations in one space dimension, Proc. Amer. Math. Soc., 69 (1978)
, 289-296.
doi: 10.1090/S0002-9939-1978-0463658-5.![]() ![]() ![]() |
|
D. B. Dix
, Nonuniqueness and uniqueness in the initial-value problem for Burgers' equation, SIAM J. Math. Anal., 27 (1996)
, 708-724.
doi: 10.1137/0527038.![]() ![]() ![]() |
|
H. Huh
, Global strong solution to the Thirring model in critical space, J. Math. Anal. Appl., 381 (2011)
, 513-520.
doi: 10.1016/j.jmaa.2011.02.042.![]() ![]() ![]() |
|
H. Huh
, Remarks on nonlinear Dirac equations in one space dimension, Commun. Korean Math. Soc. Soc., 30 (2015)
, 201-208.
doi: 10.4134/CKMS.2015.30.3.201.![]() ![]() ![]() |
|
S. Selberg
and A. Tesfahun
, Low regularity well-posedness for some nonlinear Dirac equations in one space dimension, Differential and Integral Equations, 23 (2010)
, 265-278.
![]() ![]() |