
-
Previous Article
Stability problem for the age-dependent predator-prey model
- EECT Home
- This Issue
-
Next Article
Self-similar solutions to nonlinear Dirac equations and an application to nonuniqueness
Inverse observability inequalities for integrodifferential equations in square domains
Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Via Antonio Scarpa 16,00161 Roma, Italy |
In this paper we will consider oscillations of square viscoelastic membranes by adding to the wave equation another term, which takes into account the memory. To this end, we will study a class of integrodifferential equations in square domains. By using accurate estimates of the spectral properties of the integrodifferential operator, we will prove an inverse observability inequality.
References:
[1] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[2] |
C. M. Dafermos,
Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.
doi: 10.1007/BF00251609. |
[3] |
C. M. Dafermos,
An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations, 7 (1970), 554-569.
doi: 10.1016/0022-0396(70)90101-4. |
[4] |
A. E. Ingham,
Some trigonometrical inequalities with applications to the theory of series, Math. Z., 41 (1936), 367-379.
doi: 10.1007/BF01180426. |
[5] |
J. U. Kim,
Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101-110.
doi: 10.1137/0331008. |
[6] |
V. Komornik and P. Loreti,
Fourier Series in Control Theory Springer Monogr. Math., Springer-Verlag, New York, 2005.
doi: 10.1007/b139040. |
[7] |
V. Komornik and P. Loreti,
Observability of rectangular membranes and plates on small sets, Evol. Equ. Control Theory, 3 (2014), 287-304.
doi: 10.3934/eect.2014.3.287. |
[8] |
V. Komornik and P. Loreti,
Observability of square membranes by Fourier series methods, Bulletin SUSU MMCS, 8 (2015), 127-140.
doi: 10.14529/mmp150308. |
[9] |
G. Lebon, C. Perez-Garcia and J. Casas-Vazquez,
On the thermodynamic foundations of viscoelasticity, J. Chem. Phys., 88 (1988), 5068-5075.
doi: 10.1063/1.454660. |
[10] |
J.-L. Lions,
Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev., 30 (1988), 1-68.
doi: 10.1137/1030001. |
[11] |
P. Loreti and D. Sforza,
Exact reachability for second order integro-differential equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 1153-1158.
doi: 10.1016/j.crma.2009.08.007. |
[12] |
P. Loreti and D. Sforza,
Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711-1755.
doi: 10.1016/j.jde.2009.09.016. |
[13] |
P. Loreti and D. Sforza, Multidimensional controllability problems with memory, in Modern Aspects of the Theory of Partial Differential Equations (eds. M. Ruzhansky and J. Wirth), Operator Theory: Advances and Applications 216, Birkhäuser/Springer, Basel, (2011), 261-274.
doi: 10.1007/978-3-0348-0069-3_15. |
[14] |
M. Mehrenberger,
An Ingham type proof for the boundary observability of a $N$-d wave equation, C. R. Math. Acad. Sci. Paris, 347 (2009), 63-68.
doi: 10.1016/j.crma.2008.11.002. |
[15] |
J. Prüss,
Evolutionary Integral Equations and Applications Monographs in Mathematics, 87 Birkhäuser Verlag, Basel, 1993.
doi: 10. 1007/978-3-0348-8570-6. |
[16] |
M. Renardy, W. J. Hrusa and J. A. Nohel,
Mathematical Problems in Viscoelasticity Pitman Monogr. Pure Appl. Math., 35 Longman Sci. Tech., Harlow, Essex, 1987. |
[17] |
M. Renardy,
Are viscoelastic flows under control or out of control?, Systems Control Lett., 54 (2005), 1183-1193.
doi: 10.1016/j.sysconle.2005.04.006. |
show all references
References:
[1] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[2] |
C. M. Dafermos,
Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.
doi: 10.1007/BF00251609. |
[3] |
C. M. Dafermos,
An abstract Volterra equation with applications to linear viscoelasticity, J. Differential Equations, 7 (1970), 554-569.
doi: 10.1016/0022-0396(70)90101-4. |
[4] |
A. E. Ingham,
Some trigonometrical inequalities with applications to the theory of series, Math. Z., 41 (1936), 367-379.
doi: 10.1007/BF01180426. |
[5] |
J. U. Kim,
Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101-110.
doi: 10.1137/0331008. |
[6] |
V. Komornik and P. Loreti,
Fourier Series in Control Theory Springer Monogr. Math., Springer-Verlag, New York, 2005.
doi: 10.1007/b139040. |
[7] |
V. Komornik and P. Loreti,
Observability of rectangular membranes and plates on small sets, Evol. Equ. Control Theory, 3 (2014), 287-304.
doi: 10.3934/eect.2014.3.287. |
[8] |
V. Komornik and P. Loreti,
Observability of square membranes by Fourier series methods, Bulletin SUSU MMCS, 8 (2015), 127-140.
doi: 10.14529/mmp150308. |
[9] |
G. Lebon, C. Perez-Garcia and J. Casas-Vazquez,
On the thermodynamic foundations of viscoelasticity, J. Chem. Phys., 88 (1988), 5068-5075.
doi: 10.1063/1.454660. |
[10] |
J.-L. Lions,
Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev., 30 (1988), 1-68.
doi: 10.1137/1030001. |
[11] |
P. Loreti and D. Sforza,
Exact reachability for second order integro-differential equations, C. R. Math. Acad. Sci. Paris, 347 (2009), 1153-1158.
doi: 10.1016/j.crma.2009.08.007. |
[12] |
P. Loreti and D. Sforza,
Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711-1755.
doi: 10.1016/j.jde.2009.09.016. |
[13] |
P. Loreti and D. Sforza, Multidimensional controllability problems with memory, in Modern Aspects of the Theory of Partial Differential Equations (eds. M. Ruzhansky and J. Wirth), Operator Theory: Advances and Applications 216, Birkhäuser/Springer, Basel, (2011), 261-274.
doi: 10.1007/978-3-0348-0069-3_15. |
[14] |
M. Mehrenberger,
An Ingham type proof for the boundary observability of a $N$-d wave equation, C. R. Math. Acad. Sci. Paris, 347 (2009), 63-68.
doi: 10.1016/j.crma.2008.11.002. |
[15] |
J. Prüss,
Evolutionary Integral Equations and Applications Monographs in Mathematics, 87 Birkhäuser Verlag, Basel, 1993.
doi: 10. 1007/978-3-0348-8570-6. |
[16] |
M. Renardy, W. J. Hrusa and J. A. Nohel,
Mathematical Problems in Viscoelasticity Pitman Monogr. Pure Appl. Math., 35 Longman Sci. Tech., Harlow, Essex, 1987. |
[17] |
M. Renardy,
Are viscoelastic flows under control or out of control?, Systems Control Lett., 54 (2005), 1183-1193.
doi: 10.1016/j.sysconle.2005.04.006. |

[1] |
Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263 |
[2] |
Vilmos Komornik, Gérald Tenenbaum. An Ingham--Müntz type theorem and simultaneous observation problems. Evolution Equations and Control Theory, 2015, 4 (3) : 297-314. doi: 10.3934/eect.2015.4.297 |
[3] |
Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013 |
[4] |
Ferenc Weisz. Cesàro summability and Lebesgue points of higher dimensional Fourier series. Mathematical Foundations of Computing, 2022, 5 (3) : 241-257. doi: 10.3934/mfc.2021033 |
[5] |
Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467 |
[6] |
Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009 |
[7] |
Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339 |
[8] |
Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure and Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007 |
[9] |
Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75 |
[10] |
Zhi Liu, Tie Zhang. An improved ARMA(1, 1) type fuzzy time series applied in predicting disordering. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 355-366. doi: 10.3934/naco.2020007 |
[11] |
D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499 |
[12] |
Yutian Lei. Wolff type potential estimates and application to nonlinear equations with negative exponents. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2067-2078. doi: 10.3934/dcds.2015.35.2067 |
[13] |
Feiyao Ma, Lihe Wang. Schauder type estimates of linearized Mullins-Sekerka problem. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1037-1050. doi: 10.3934/cpaa.2012.11.1037 |
[14] |
Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1883-1898. doi: 10.3934/dcdss.2020148 |
[15] |
Y. Efendiev, Alexander Pankov. Meyers type estimates for approximate solutions of nonlinear elliptic equations and their applications. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 481-492. doi: 10.3934/dcdsb.2006.6.481 |
[16] |
Steve Hofmann, Dorina Mitrea, Marius Mitrea, Andrew J. Morris. Square function estimates in spaces of homogeneous type and on uniformly rectifiable Euclidean sets. Electronic Research Announcements, 2014, 21: 8-18. doi: 10.3934/era.2014.21.8 |
[17] |
Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121 |
[18] |
Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237 |
[19] |
Gary M. Lieberman. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1525-1566. doi: 10.3934/dcdsb.2016010 |
[20] |
Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]