March  2019, 8(1): 139-147. doi: 10.3934/eect.2019008

Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's

1. 

Clark Atlanta University, Department of Physics, Atlanta, GA 30314, USA

2. 

Morehouse College, Department of Physics, Atlanta, GA 30314, USA

Corresponding author: Kale Oyedeji, 470-639-0285

Received  October 2017 Revised  January 2018 Published  March 2019 Early access  January 2019

We investigate traveling wave (TW) solutions to modified versionsof the Burgers and Fisher PDE’s. Both equations are nonlinear parabolicPDE’s having square-root dynamics in their advection and reaction terms.Under certain assumptions, exact forms are constructed for the TW solutions.

Citation: Ronald Mickens, Kale Oyedeji. Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's. Evolution Equations and Control Theory, 2019, 8 (1) : 139-147. doi: 10.3934/eect.2019008
References:
[1]

R. Buckmire, K. McMurtry and R. E. Mickens, Numerical studies of a nonlinear heat equation with square root reaction term, Numerical Methods for Partial Differential Equations, 25 (2009), 598-609. doi: 10.1002/num.20361.

[2]

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhäuser, Boston, 1997.

[3]

P. M. Jordan, Finite-amplitude acoustic traveling waves in a fluid that saturates a porous media, Physics Letters A, 355 (2006), 216-221.

[4]

P. M. Jordan, A Note on the Lambert W-function: Applications in the mathematical and physical sciences, Contemporary Mathematics, 618 (2014), 247-263. doi: 10.1090/conm/618/12351.

[5]

J. D. Logan, Nonlinear Partial Differential Equations Wiley-Interscience, New York, 1994.

[6]

R. E. Mickens, Exact finite difference scheme for an advection equation having square-root dynamics, Journal of Difference Equations and Applications, 14 (2008), 1149-1157. doi: 10.1080/10236190802332209.

[7]

R. E. Mickens, Wave front behavior of traveling waves solutions for a PDE having square-root dynamics, Mathematics and Computers in Simulation, 82 (2012), 1271-1277. doi: 10.1016/j.matcom.2010.08.010.

[8]

R. E. Mickens, Mathematical Methods for the Natural and Engineering Sciences, 2nd edition, World Scientific, London, 2017.

[9]

J. D. Murray, Mathematical Biology, Springer, Berlin, 1993. doi: 10.1007/b98869.

[10]

S. I. Soluyan and R. V. Khokhlov, Finite amplitude acoustic waves in a relaxing medium, Soviet Physics - Acoustic, 8 (1962), 170-175.

[11]

S. R. Valluri, D. J. Jeffrey and R. M. Corless, Some applications of the Lambert W function to physics, Canadian Journal of Physics, 78 (2000), 823-831.

[12]

G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.

[13]

H. Wilhelmsson, M. Benda, B. Etlicher, R. Jancel and T. Lehner, Non-linear evolution of densities in the presence of simultaneous diffusion and reaction processes, Physica Scripta, 38 (1988), 1482-1489. doi: 10.1103/PhysRevA.38.1482.

show all references

References:
[1]

R. Buckmire, K. McMurtry and R. E. Mickens, Numerical studies of a nonlinear heat equation with square root reaction term, Numerical Methods for Partial Differential Equations, 25 (2009), 598-609. doi: 10.1002/num.20361.

[2]

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhäuser, Boston, 1997.

[3]

P. M. Jordan, Finite-amplitude acoustic traveling waves in a fluid that saturates a porous media, Physics Letters A, 355 (2006), 216-221.

[4]

P. M. Jordan, A Note on the Lambert W-function: Applications in the mathematical and physical sciences, Contemporary Mathematics, 618 (2014), 247-263. doi: 10.1090/conm/618/12351.

[5]

J. D. Logan, Nonlinear Partial Differential Equations Wiley-Interscience, New York, 1994.

[6]

R. E. Mickens, Exact finite difference scheme for an advection equation having square-root dynamics, Journal of Difference Equations and Applications, 14 (2008), 1149-1157. doi: 10.1080/10236190802332209.

[7]

R. E. Mickens, Wave front behavior of traveling waves solutions for a PDE having square-root dynamics, Mathematics and Computers in Simulation, 82 (2012), 1271-1277. doi: 10.1016/j.matcom.2010.08.010.

[8]

R. E. Mickens, Mathematical Methods for the Natural and Engineering Sciences, 2nd edition, World Scientific, London, 2017.

[9]

J. D. Murray, Mathematical Biology, Springer, Berlin, 1993. doi: 10.1007/b98869.

[10]

S. I. Soluyan and R. V. Khokhlov, Finite amplitude acoustic waves in a relaxing medium, Soviet Physics - Acoustic, 8 (1962), 170-175.

[11]

S. R. Valluri, D. J. Jeffrey and R. M. Corless, Some applications of the Lambert W function to physics, Canadian Journal of Physics, 78 (2000), 823-831.

[12]

G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.

[13]

H. Wilhelmsson, M. Benda, B. Etlicher, R. Jancel and T. Lehner, Non-linear evolution of densities in the presence of simultaneous diffusion and reaction processes, Physica Scripta, 38 (1988), 1482-1489. doi: 10.1103/PhysRevA.38.1482.

Figure 1.  a) $ v(z) $ vs $ z $, b) $ f(z) = v(z)^2 $ vs $ z $. See Eqs. (5.10) and (5.13).
Figure 2.  a) $ v(z) $ vs $ z $, \quad b) $ f(z) $ vs $ z $. See Eq. (5.15).
[1]

Weiguo Zhang, Yujiao Sun, Zhengming Li, Shengbing Pei, Xiang Li. Bounded traveling wave solutions for MKdV-Burgers equation with the negative dispersive coefficient. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2883-2903. doi: 10.3934/dcdsb.2016078

[2]

Armengol Gasull, Hector Giacomini, Joan Torregrosa. Explicit upper and lower bounds for the traveling wave solutions of Fisher-Kolmogorov type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3567-3582. doi: 10.3934/dcds.2013.33.3567

[3]

Aijun Zhang. Traveling wave solutions with mixed dispersal for spatially periodic Fisher-KPP equations. Conference Publications, 2013, 2013 (special) : 815-824. doi: 10.3934/proc.2013.2013.815

[4]

Aijun Zhang. Traveling wave solutions of periodic nonlocal Fisher-KPP equations with non-compact asymmetric kernel. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022061

[5]

Yu Ichida. Classification of nonnegative traveling wave solutions for the 1D degenerate parabolic equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022114

[6]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[7]

Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507

[8]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[9]

Hirokazu Ninomiya. Entire solutions and traveling wave solutions of the Allen-Cahn-Nagumo equation. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 2001-2019. doi: 10.3934/dcds.2019084

[10]

Lijun Zhang, Peiying Yuan, Jingli Fu, Chaudry Masood Khalique. Bifurcations and exact traveling wave solutions of the Zakharov-Rubenchik equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2927-2939. doi: 10.3934/dcdss.2020214

[11]

Xiaojie Hou, Yi Li, Kenneth R. Meyer. Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 265-290. doi: 10.3934/dcds.2010.26.265

[12]

Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687

[13]

Anna Geyer, Ronald Quirchmayr. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1567-1604. doi: 10.3934/dcds.2018065

[14]

Aiyong Chen, Chi Zhang, Wentao Huang. Limit speed of traveling wave solutions for the perturbed generalized KdV equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022048

[15]

Lijun Zhang, Yixia Shi, Maoan Han. Smooth and singular traveling wave solutions for the Serre-Green-Naghdi equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2917-2926. doi: 10.3934/dcdss.2020217

[16]

Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841

[17]

E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure and Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457

[18]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[19]

Lina Wang, Xueli Bai, Yang Cao. Exponential stability of the traveling fronts for a viscous Fisher-KPP equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 801-815. doi: 10.3934/dcdsb.2014.19.801

[20]

Yuqian Zhou, Qian Liu. Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2057-2071. doi: 10.3934/dcdsb.2016036

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (400)
  • HTML views (422)
  • Cited by (2)

Other articles
by authors

[Back to Top]