-
Previous Article
Existence, blow-up and exponential decay of solutions for a porous-elastic system with damping and source terms
- EECT Home
- This Issue
-
Next Article
Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data
Stability of the anisotropic Maxwell equations with a conductivity term
Department of Mathematics, Georgetown University, Washington, DC 20057, USA |
The dynamic Maxwell equations with a conductivity term are considered. Conditions for the exponential and strong stability of an initial-boundary value problem are given. The permeability and the permittivity are assumed to be $ 3\times 3 $ symmetric, positive definite tensors. A result concerning solutions of higher regularity is obtained along the way.
References:
[1] |
M. Belishev and A. Glasman, Boundary control of the Maxwell dynamical system: Lack of controllability by topological reasons, in Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003, Springer, Berlin, 2003,177-182. |
[2] |
J. Cagnol and M. Eller,
Boundary regularity for Maxwell's equations with applications to shape optimization, J. Differential Equations, 250 (2011), 1114-1136.
doi: 10.1016/j.jde.2010.08.004. |
[3] |
M. Cessenat, Mathematical Methods in Electromagnetism, vol. 41 of Series on Advances in Mathematics for Applied Sciences, World Scientific Publishing Co. Inc., River Edge, NJ, 1996, Linear theory and applications.
doi: 10.1142/2938. |
[4] |
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990, Spectral theory and applications, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson. |
[5] |
W. Desch, R. Grimmer and W. Schappacher,
Some considerations for linear integro-differential equations, J. Math. Anal. Appl., 104 (1984), 219-234.
doi: 10.1016/0022-247X(84)90044-1. |
[6] |
M. Eller and D. Toundykov,
A global holmgren theorem for multidimensional hyperbolic partial differential equations, Applicable Analysis, 91 (2012), 69-90.
doi: 10.1080/00036811.2010.538685. |
[7] |
M. M. Eller,
Continuous observability for the anisotropic Maxwell system, Appl. Math. Optim., 55 (2007), 185-201.
doi: 10.1007/s00245-006-0886-x. |
[8] |
M. M. Eller and M. Yamamoto,
A Carleman inequality for the stationary anisotropic Maxwell system, J. Math. Pures Appl. (9), 86 (2006), 449-462.
doi: 10.1016/j.matpur.2006.10.004. |
[9] |
N. Iwasaki,
Local decay of solutions for symmetric hyperbolic systems with dissipative and coercive boundary conditions in exterior domains, Publ. Res. Inst. Math. Sci., 5 (1969), 193-218.
doi: 10.2977/prims/1195194630. |
[10] |
P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967.
![]() ![]() |
[11] |
R. Leis,
über die eindeutige Fortsetzbarkeit der Lösungen der Maxwellschen Gleichungen in anisotropen inhomogenen Medien, Bul. Inst. Politehn. Iașsi (N.S.), 14 (1968), 119-124.
|
[12] |
A. Majda and S. Osher,
Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), 607-675.
doi: 10.1002/cpa.3160280504. |
[13] |
C. S. Morawetz,
The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math., 14 (1961), 561-568.
doi: 10.1002/cpa.3160140327. |
[14] |
S. Nicaise and C. Pignotti, Internal stabilization of Maxwell's equations in heterogeneous media, Abstr. Appl. Anal., 2005,791-811.
doi: 10.1155/AAA.2005.791. |
[15] |
T. Ohkubo,
Regularity of solutions to hyperbolic mixed problems with uniformly characteristic boundary, Hokkaido Math. J., 10 (1981), 93-123.
doi: 10.14492/hokmj/1381758116. |
[16] |
A. Pazy, Semigroups of linear operators and applications to partial differential equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
K. D. Phung,
Contrôle et stabilisation d'ondes électromagnétiques, ESAIM Control Optim. Calc. Var., 5 (2000), 87-137.
doi: 10.1051/cocv:2000103. |
[18] |
R. Picard and W. Zajaczkowski,
Local existence of solutions of impedance initial-boundary value problem for non-linear Maxwell equations, Mathematical Methods in the Applied Sciences, 18 (1995), 169-199.
doi: 10.1002/mma.1670180302. |
[19] |
J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, vol. 133 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2012.
doi: 10.1090/gsm/133. |
[20] |
J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24 (1974), 79-86, URL https://doi.org/10.1512/iumj.1974.24.24004.
doi: 10.1512/iumj.1975.24.24004. |
[21] |
J. B. Rauch and F. J. Massey Ⅲ,
Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189 (1974), 303-318.
doi: 10.2307/1996861. |
[22] |
V. A. Solonnikov,
Overdetermined elliptic boundary value problems, Dokl. Akad. Nauk SSSR, 199 (1971), 279-281.
|
[23] |
M. Spitz, Local Wellposedness of Nonlinear Maxwell Equations, Karlsruhe Institute of Technology, https://doi.org/10.5445/IR/1000078030, 2017, Ph.D Thesis. |
show all references
References:
[1] |
M. Belishev and A. Glasman, Boundary control of the Maxwell dynamical system: Lack of controllability by topological reasons, in Mathematical and Numerical Aspects of Wave Propagation—WAVES 2003, Springer, Berlin, 2003,177-182. |
[2] |
J. Cagnol and M. Eller,
Boundary regularity for Maxwell's equations with applications to shape optimization, J. Differential Equations, 250 (2011), 1114-1136.
doi: 10.1016/j.jde.2010.08.004. |
[3] |
M. Cessenat, Mathematical Methods in Electromagnetism, vol. 41 of Series on Advances in Mathematics for Applied Sciences, World Scientific Publishing Co. Inc., River Edge, NJ, 1996, Linear theory and applications.
doi: 10.1142/2938. |
[4] |
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990, Spectral theory and applications, With the collaboration of Michel Artola and Michel Cessenat, Translated from the French by John C. Amson. |
[5] |
W. Desch, R. Grimmer and W. Schappacher,
Some considerations for linear integro-differential equations, J. Math. Anal. Appl., 104 (1984), 219-234.
doi: 10.1016/0022-247X(84)90044-1. |
[6] |
M. Eller and D. Toundykov,
A global holmgren theorem for multidimensional hyperbolic partial differential equations, Applicable Analysis, 91 (2012), 69-90.
doi: 10.1080/00036811.2010.538685. |
[7] |
M. M. Eller,
Continuous observability for the anisotropic Maxwell system, Appl. Math. Optim., 55 (2007), 185-201.
doi: 10.1007/s00245-006-0886-x. |
[8] |
M. M. Eller and M. Yamamoto,
A Carleman inequality for the stationary anisotropic Maxwell system, J. Math. Pures Appl. (9), 86 (2006), 449-462.
doi: 10.1016/j.matpur.2006.10.004. |
[9] |
N. Iwasaki,
Local decay of solutions for symmetric hyperbolic systems with dissipative and coercive boundary conditions in exterior domains, Publ. Res. Inst. Math. Sci., 5 (1969), 193-218.
doi: 10.2977/prims/1195194630. |
[10] |
P. D. Lax and R. S. Phillips, Scattering Theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967.
![]() ![]() |
[11] |
R. Leis,
über die eindeutige Fortsetzbarkeit der Lösungen der Maxwellschen Gleichungen in anisotropen inhomogenen Medien, Bul. Inst. Politehn. Iașsi (N.S.), 14 (1968), 119-124.
|
[12] |
A. Majda and S. Osher,
Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), 607-675.
doi: 10.1002/cpa.3160280504. |
[13] |
C. S. Morawetz,
The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math., 14 (1961), 561-568.
doi: 10.1002/cpa.3160140327. |
[14] |
S. Nicaise and C. Pignotti, Internal stabilization of Maxwell's equations in heterogeneous media, Abstr. Appl. Anal., 2005,791-811.
doi: 10.1155/AAA.2005.791. |
[15] |
T. Ohkubo,
Regularity of solutions to hyperbolic mixed problems with uniformly characteristic boundary, Hokkaido Math. J., 10 (1981), 93-123.
doi: 10.14492/hokmj/1381758116. |
[16] |
A. Pazy, Semigroups of linear operators and applications to partial differential equations, vol. 44 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
K. D. Phung,
Contrôle et stabilisation d'ondes électromagnétiques, ESAIM Control Optim. Calc. Var., 5 (2000), 87-137.
doi: 10.1051/cocv:2000103. |
[18] |
R. Picard and W. Zajaczkowski,
Local existence of solutions of impedance initial-boundary value problem for non-linear Maxwell equations, Mathematical Methods in the Applied Sciences, 18 (1995), 169-199.
doi: 10.1002/mma.1670180302. |
[19] |
J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, vol. 133 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2012.
doi: 10.1090/gsm/133. |
[20] |
J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J., 24 (1974), 79-86, URL https://doi.org/10.1512/iumj.1974.24.24004.
doi: 10.1512/iumj.1975.24.24004. |
[21] |
J. B. Rauch and F. J. Massey Ⅲ,
Differentiability of solutions to hyperbolic initial-boundary value problems, Trans. Amer. Math. Soc., 189 (1974), 303-318.
doi: 10.2307/1996861. |
[22] |
V. A. Solonnikov,
Overdetermined elliptic boundary value problems, Dokl. Akad. Nauk SSSR, 199 (1971), 279-281.
|
[23] |
M. Spitz, Local Wellposedness of Nonlinear Maxwell Equations, Karlsruhe Institute of Technology, https://doi.org/10.5445/IR/1000078030, 2017, Ph.D Thesis. |
[1] |
Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135 |
[2] |
Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212 |
[3] |
Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917 |
[4] |
Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917 |
[5] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[6] |
Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381 |
[7] |
Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148 |
[8] |
Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015 |
[9] |
Haifeng Hu, Kaijun Zhang. Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1601-1626. doi: 10.3934/dcdsb.2014.19.1601 |
[10] |
Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59 |
[11] |
Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021205 |
[12] |
Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032 |
[13] |
Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319 |
[14] |
Zhiyuan Li, Xinchi Huang, Masahiro Yamamoto. Initial-boundary value problems for multi-term time-fractional diffusion equations with $ x $-dependent coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 153-179. doi: 10.3934/eect.2020001 |
[15] |
V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191 |
[16] |
Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure and Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 |
[17] |
Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244 |
[18] |
Rusuo Ye, Yi Zhang. Initial-boundary value problems for the two-component complex modified Korteweg-de Vries equation on the interval. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022111 |
[19] |
Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431 |
[20] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]