• Previous Article
    Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods
  • EECT Home
  • This Issue
  • Next Article
    The cost of boundary controllability for a parabolic equation with inverse square potential
June  2019, 8(2): 423-445. doi: 10.3934/eect.2019021

Decay rate of the Timoshenko system with one boundary damping

Laboratoire de Mathématiques et ses Applications de Valenciennes, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, Université Polytechnique Hauts-de-France, Le Mont Houy, 59313 VALENCIENNES Cedex 9, FRANCE

* Corresponding author: Virginie Régnier

Received  October 2017 Revised  August 2018 Published  June 2019 Early access  March 2019

In this paper, we study the indirect boundary stabilization of the Timoshenko system with only one dissipation law. This system, which models the dynamics of a beam, is a hyperbolic system with two wave speeds. Assuming that the wave speeds are equal, we prove exponential stability. Otherwise, we show that the decay rate is of exponential or polynomial type. Note that the results hold without the technical assumptions on the coefficients coming from the multiplier method: a sharp analysis of the behaviour of the resolvent operator along the imaginary axis is performed to avoid those artificial restrictions.

Citation: Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021
References:
[1]

F. Abdallah, Stabilisation et Approximation de Certains Systèmes Distribués par Amortisement Dissipatif et de Signe Indéfini, Ph.D thesis, Lebanese University and Université de Valenciennes et du Hainaut Cambrésis, 2013.

[2]

F. AbdallahD. Mercier and S. Nicaise, Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems, Evolution Equations and Control Theory, 2 (2013), 1-33.  doi: 10.3934/eect.2013.2.1.

[3]

F. Alabau, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, NoDEA Nonlinear Diff. Eqns Appl., 14 (2007), 643-669.  doi: 10.1007/s00030-007-5033-0.

[4]

F. Ammar-KodjaA. BenabdallahJ. E. Munoz-Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Diff. Equations, 194 (2003), 82-115.  doi: 10.1016/S0022-0396(03)00185-2.

[5]

F. Ammar-KodjaS. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam, J. Math. Anal. Appl., 327 (2007), 525-538.  doi: 10.1016/j.jmaa.2006.04.016.

[6]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 305 (1988), 837-852.  doi: 10.1090/S0002-9947-1988-0933321-3.

[7]

M. BassamD. MercierS. Nicaise and A. Wehbe, Stabilisation frontière indirecte du système de Timoshenko, C. R. Acad. Sc. Paris, Sér. I, 349 (2011), 379-384.  doi: 10.1016/j.crma.2011.03.011.

[8]

M. BassamD. MercierS. Nicaise and A. Wehbe, Polynomial stability of the Timoshenko system by one boundary damping, J. Math. Anal and Appl., 425 (2015), 1177-1203.  doi: 10.1016/j.jmaa.2014.12.055.

[9]

C. D. Benchimol, A note on weak stabilizability of contraction semi-groups, SIAM J. Control Optim., 16 (1978), 373-379.  doi: 10.1137/0316023.

[10]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.  doi: 10.1007/s00208-009-0439-0.

[11]

D. Feng and W. Zhang, Nonlinear feedback control of Timoshenko beam, Science in China (Series A), 38 (1995), 918-927. 

[12]

I. Gohberg and M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Spaces, Translation of Mathematical Monographs, Vol. 18, American Mathematical Society, 1969.

[13]

M. Grobbelaar-Van Dalsen, Uniform stability for the Timoshenko beam with tip load, J. Math. Anal. Appl., 361 (2010), 392-400.  doi: 10.1016/j.jmaa.2009.06.059.

[14]

B-Z. Guo, Riesz basis approch to the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim., 39 (2001), 1736-1747.  doi: 10.1137/S0363012999354880.

[15]

W. HeS. Zhang and S. Ge, Boundary output-feedback stabilization of a timoshenko beam using disturbance observer, IEEE Transactions on Industrial Electronics, 60 (2013), 5186-5194.  doi: 10.1109/TIE.2012.2219835.

[16]

F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. of Diff. Eqs, 1 (1985), 43-56. 

[17]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.  doi: 10.1137/0325078.

[18]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.  doi: 10.1007/s00033-004-3073-4.

[19]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, 398 Research Notes in Mathematics, Champman & Hall/CRC, 1999.

[20]

S. A. Messaoudi and M. I. Mustafa, A stability result in a memory-type Timoshenko system, Dynamic Systems and Applications, 18 (2009), 457-468. 

[21]

S. A. Messaoudi and B. Said-Houari, Uniform decay in a Timoshenko-type system with past history, J. Math. Anal. Appl., 360 (2009), 459-475.  doi: 10.1016/j.jmaa.2009.06.064.

[22]

S. A. Messaoudi and M. I. Mustafa, On the internal and boundary stabilization of Timoshenko beams, NoDEA Nonlinear Diff. Eqns Appl., 15 (2008), 655-671.  doi: 10.1007/s00030-008-7075-3.

[23]

J. E. Muñoz Rivera and R. Racke, Timoshenko systems with indefinite damping, J. Math. Anal. Appl., 341 (2008), 1068-1083.  doi: 10.1016/j.jmaa.2007.11.012.

[24]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.  doi: 10.1016/S0022-247X(02)00436-5.

[25]

J. E. Muñoz Rivera and H. D. Fernández Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482-502.  doi: 10.1016/j.jmaa.2007.07.012.

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.

[27]

J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.

[28]

C. A. RaposoJ. FerreiraM. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two week dampings, Applied Mathematics Letters, 18 (2005), 535-541.  doi: 10.1016/j.aml.2004.03.017.

[29]

D. Shi and D. Feng, Exponential decay rate of the energy of a Timoshenko beam with locally distributed feedback, ANZIAM J., 44 (2002), 205-220.  doi: 10.1017/S1446181100013900.

[30]

A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. Paris, Sér. I Math., 328 (1999), 731-734.  doi: 10.1016/S0764-4442(99)80244-4.

[31]

A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electronic Journal of Differential Equation, 29 (2003), 1-14. 

[32]

S. W. Taylor, Boundary Control of the Timoshenko Beam with Variable Physical Characteristics, Research Report 356, Dept. Math., Univ. Auckland, 1998.

[33]

Q. P. VuJ. M. WangG. Q. Xu and S. P. Yung, Spectral analysis and system of fundamental solutions for Timoshenko beams, Applied Mathematics Letters, 18 (2005), 127-134.  doi: 10.1016/j.aml.2004.09.001.

[34]

A. Wehbe and W. Youssef, Stabilization of the uniform Timoshenko beam by one locally distributed feedback, Applicable Analysis, 88 (2009), 1067-1078.  doi: 10.1080/00036810903156149.

[35]

L. ZietsmanN. F. J. van Rensburg and A. J. van der Merwe, A Timoshenko beam with tip body and boundary damping, Wave Motion, 39 (2004), 199-211.  doi: 10.1016/j.wavemoti.2003.08.003.

show all references

References:
[1]

F. Abdallah, Stabilisation et Approximation de Certains Systèmes Distribués par Amortisement Dissipatif et de Signe Indéfini, Ph.D thesis, Lebanese University and Université de Valenciennes et du Hainaut Cambrésis, 2013.

[2]

F. AbdallahD. Mercier and S. Nicaise, Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems, Evolution Equations and Control Theory, 2 (2013), 1-33.  doi: 10.3934/eect.2013.2.1.

[3]

F. Alabau, Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control, NoDEA Nonlinear Diff. Eqns Appl., 14 (2007), 643-669.  doi: 10.1007/s00030-007-5033-0.

[4]

F. Ammar-KodjaA. BenabdallahJ. E. Munoz-Rivera and R. Racke, Energy decay for Timoshenko systems of memory type, J. Diff. Equations, 194 (2003), 82-115.  doi: 10.1016/S0022-0396(03)00185-2.

[5]

F. Ammar-KodjaS. Kerbal and A. Soufyane, Stabilization of the nonuniform Timoshenko beam, J. Math. Anal. Appl., 327 (2007), 525-538.  doi: 10.1016/j.jmaa.2006.04.016.

[6]

W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc., 305 (1988), 837-852.  doi: 10.1090/S0002-9947-1988-0933321-3.

[7]

M. BassamD. MercierS. Nicaise and A. Wehbe, Stabilisation frontière indirecte du système de Timoshenko, C. R. Acad. Sc. Paris, Sér. I, 349 (2011), 379-384.  doi: 10.1016/j.crma.2011.03.011.

[8]

M. BassamD. MercierS. Nicaise and A. Wehbe, Polynomial stability of the Timoshenko system by one boundary damping, J. Math. Anal and Appl., 425 (2015), 1177-1203.  doi: 10.1016/j.jmaa.2014.12.055.

[9]

C. D. Benchimol, A note on weak stabilizability of contraction semi-groups, SIAM J. Control Optim., 16 (1978), 373-379.  doi: 10.1137/0316023.

[10]

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347 (2010), 455-478.  doi: 10.1007/s00208-009-0439-0.

[11]

D. Feng and W. Zhang, Nonlinear feedback control of Timoshenko beam, Science in China (Series A), 38 (1995), 918-927. 

[12]

I. Gohberg and M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Spaces, Translation of Mathematical Monographs, Vol. 18, American Mathematical Society, 1969.

[13]

M. Grobbelaar-Van Dalsen, Uniform stability for the Timoshenko beam with tip load, J. Math. Anal. Appl., 361 (2010), 392-400.  doi: 10.1016/j.jmaa.2009.06.059.

[14]

B-Z. Guo, Riesz basis approch to the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim., 39 (2001), 1736-1747.  doi: 10.1137/S0363012999354880.

[15]

W. HeS. Zhang and S. Ge, Boundary output-feedback stabilization of a timoshenko beam using disturbance observer, IEEE Transactions on Industrial Electronics, 60 (2013), 5186-5194.  doi: 10.1109/TIE.2012.2219835.

[16]

F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces, Ann. of Diff. Eqs, 1 (1985), 43-56. 

[17]

J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.  doi: 10.1137/0325078.

[18]

Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys., 56 (2005), 630-644.  doi: 10.1007/s00033-004-3073-4.

[19]

Z. Liu and S. Zheng, Semigroups Associated with Dissipative Systems, 398 Research Notes in Mathematics, Champman & Hall/CRC, 1999.

[20]

S. A. Messaoudi and M. I. Mustafa, A stability result in a memory-type Timoshenko system, Dynamic Systems and Applications, 18 (2009), 457-468. 

[21]

S. A. Messaoudi and B. Said-Houari, Uniform decay in a Timoshenko-type system with past history, J. Math. Anal. Appl., 360 (2009), 459-475.  doi: 10.1016/j.jmaa.2009.06.064.

[22]

S. A. Messaoudi and M. I. Mustafa, On the internal and boundary stabilization of Timoshenko beams, NoDEA Nonlinear Diff. Eqns Appl., 15 (2008), 655-671.  doi: 10.1007/s00030-008-7075-3.

[23]

J. E. Muñoz Rivera and R. Racke, Timoshenko systems with indefinite damping, J. Math. Anal. Appl., 341 (2008), 1068-1083.  doi: 10.1016/j.jmaa.2007.11.012.

[24]

J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.  doi: 10.1016/S0022-247X(02)00436-5.

[25]

J. E. Muñoz Rivera and H. D. Fernández Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482-502.  doi: 10.1016/j.jmaa.2007.07.012.

[26]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.

[27]

J. Prüss, On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284 (1984), 847-857.  doi: 10.2307/1999112.

[28]

C. A. RaposoJ. FerreiraM. L. Santos and N. N. O. Castro, Exponential stability for the Timoshenko system with two week dampings, Applied Mathematics Letters, 18 (2005), 535-541.  doi: 10.1016/j.aml.2004.03.017.

[29]

D. Shi and D. Feng, Exponential decay rate of the energy of a Timoshenko beam with locally distributed feedback, ANZIAM J., 44 (2002), 205-220.  doi: 10.1017/S1446181100013900.

[30]

A. Soufyane, Stabilisation de la poutre de Timoshenko, C. R. Acad. Sci. Paris, Sér. I Math., 328 (1999), 731-734.  doi: 10.1016/S0764-4442(99)80244-4.

[31]

A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electronic Journal of Differential Equation, 29 (2003), 1-14. 

[32]

S. W. Taylor, Boundary Control of the Timoshenko Beam with Variable Physical Characteristics, Research Report 356, Dept. Math., Univ. Auckland, 1998.

[33]

Q. P. VuJ. M. WangG. Q. Xu and S. P. Yung, Spectral analysis and system of fundamental solutions for Timoshenko beams, Applied Mathematics Letters, 18 (2005), 127-134.  doi: 10.1016/j.aml.2004.09.001.

[34]

A. Wehbe and W. Youssef, Stabilization of the uniform Timoshenko beam by one locally distributed feedback, Applicable Analysis, 88 (2009), 1067-1078.  doi: 10.1080/00036810903156149.

[35]

L. ZietsmanN. F. J. van Rensburg and A. J. van der Merwe, A Timoshenko beam with tip body and boundary damping, Wave Motion, 39 (2004), 199-211.  doi: 10.1016/j.wavemoti.2003.08.003.

[1]

Jaime E. Muñoz Rivera, Maria Grazia Naso. About the stability to Timoshenko system with pointwise dissipation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2289-2303. doi: 10.3934/dcdss.2022078

[2]

Filippo Dell'Oro, Marcio A. Jorge Silva, Sandro B. Pinheiro. Exponential stability of Timoshenko-Gurtin-Pipkin systems with full thermal coupling. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2189-2207. doi: 10.3934/dcdss.2022050

[3]

Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067

[4]

Salim A. Messaoudi, Muhammad I. Mustafa. A general stability result in a memory-type Timoshenko system. Communications on Pure and Applied Analysis, 2013, 12 (2) : 957-972. doi: 10.3934/cpaa.2013.12.957

[5]

Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203

[6]

Lei Wang, Zhong-Jie Han, Gen-Qi Xu. Exponential-stability and super-stability of a thermoelastic system of type II with boundary damping. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2733-2750. doi: 10.3934/dcdsb.2015.20.2733

[7]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations and Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[8]

Alaa Hayek, Serge Nicaise, Zaynab Salloum, Ali Wehbe. Exponential and polynomial stability results for networks of elastic and thermo-elastic rods. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1183-1220. doi: 10.3934/dcdss.2021142

[9]

J.E. Muñoz Rivera, Reinhard Racke. Global stability for damped Timoshenko systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1625-1639. doi: 10.3934/dcds.2003.9.1625

[10]

Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations and Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003

[11]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[12]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure and Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[13]

George Avalos. Strong stability of PDE semigroups via a generator resolvent criterion. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 207-218. doi: 10.3934/dcdss.2008.1.207

[14]

Joel Andersson, Leo Tzou. Stability for a magnetic Schrödinger operator on a Riemann surface with boundary. Inverse Problems and Imaging, 2018, 12 (1) : 1-28. doi: 10.3934/ipi.2018001

[15]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[16]

Qiong Zhang. Exponential stability of a joint-leg-beam system with memory damping. Mathematical Control and Related Fields, 2015, 5 (2) : 321-333. doi: 10.3934/mcrf.2015.5.321

[17]

Karim El Mufti, Rania Yahia. Polynomial stability in viscoelastic network of strings. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1421-1438. doi: 10.3934/dcdss.2022073

[18]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[19]

Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 791-813. doi: 10.3934/dcdss.2016029

[20]

Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (423)
  • HTML views (469)
  • Cited by (1)

Other articles
by authors

[Back to Top]