We solve the scattering problems for nonlinear Schrödinger equations with an inverse-square potential by applying the energy methods. The methods are optimized to the abstract semilinear Schrödinger evolution equations with nonautonomous terms.
Citation: |
[1] |
L. Baudouin, O. Kavian and J.-P. Puel, Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differential Equations, 216 (2005), 188-222.
doi: 10.1016/j.jde.2005.04.006.![]() ![]() ![]() |
[2] |
N. Burq, F. Planchon, J. Stalker and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203 (2003), 519-549.
doi: 10.1016/S0022-1236(03)00238-6.![]() ![]() ![]() |
[3] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, 2003.
doi: 10.1090/cln/010.![]() ![]() ![]() |
[4] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13. The Clarendon Press, Oxford University
Press, New York, 1998.
![]() ![]() |
[5] |
T. Cazenave and F. B. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equation, Comm. Math. Phys., 147 (1992), 75-100.
doi: 10.1007/BF02099529.![]() ![]() ![]() |
[6] |
J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension $n \ge 2$, Comm. Math. Phys., 151 (1993), 619-645.
doi: 10.1007/BF02097031.![]() ![]() ![]() |
[7] |
J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. Ⅰ, Rev. Math. Phys., 12 (2000), 361-429.
doi: 10.1142/S0129055X00000137.![]() ![]() ![]() |
[8] |
J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations. Ⅱ, Ann. Henri Poincaré, 1 (2000), 753-800.
doi: 10.1007/PL00001014.![]() ![]() ![]() |
[9] |
N. Hayashi and T. Ozawa, Scattering theory in the weighted $L^{2}(\mathbb{R}^{n})$ spaces for some Schrödinger equations, Ann. Inst. Henri Poincaré, 48 (1988), 17-37.
![]() ![]() |
[10] |
N. Hayashi and Y. Tsutsumi, Scattering theory for Hartree type equations, Ann. Inst. Henri Poincaré, 46 (1987), 187-213.
![]() ![]() |
[11] |
J. Lu, C. Miao and J. Murphy, Scattering in $H^{1}$ for the intercritical NLS with an inverse-square potential, J. Differ. Equ., 264 (2018), 3174-3211.
doi: 10.1016/j.jde.2017.11.015.![]() ![]() ![]() |
[12] |
H. Mizutani, Remarks on endpoint Strichartz estimates for Schrödinger equations with the critical inverse-square potential, J. Differential Equations, 263 (2017), 3832-3853.
doi: 10.1016/j.jde.2017.05.006.![]() ![]() ![]() |
[13] |
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space. Ⅱ, Ann. Henri Poincaré, 3 (2002), 503-535.
doi: 10.1007/s00023-002-8626-5.![]() ![]() ![]() |
[14] |
K. Nakanishi, Modified wave operators for the Hartree equation with data, image and convergence in the same space, Commun. Pure Appl. Anal., 1 (2002), 237-252.
doi: 10.3934/cpaa.2002.1.237.![]() ![]() ![]() |
[15] |
N. Okazawa, T. Suzuki and T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal., 91 (2012), 1605-1629.
doi: 10.1080/00036811.2011.631914.![]() ![]() ![]() |
[16] |
N. Okazawa, T. Suzuki and T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control Theory, 1 (2012), 337-354.
doi: 10.3934/eect.2012.1.337.![]() ![]() ![]() |
[17] |
N. Okazawa, T. Yokota and K. Yoshii, Remarks on linear Schrödinger evolution equations with Coulomb potential with moving center, SUT J. Math., 46 (2010), 155-176.
![]() ![]() |
[18] |
N. Okazawa and K. Yoshii, Linear Schrödinger evolution equations with moving Coulomb singularities, J. Differential Equations, 254 (2013), 2964-2999.
doi: 10.1016/j.jde.2013.01.017.![]() ![]() ![]() |
[19] |
V. Pierfelice, Weighted Strichartz estimates for the Schrödinger and wave equations on Damek-Ricci spaces, Math. Z., 260 (2008), 377-392.
![]() |
[20] |
T. Suzuki, Energy methods for Hartree type equation with inverse-square potentials, Evol. Equ. Control Theory, 2 (2013), 531-542.
doi: 10.3934/eect.2013.2.531.![]() ![]() ![]() |
[21] |
T. Suzuki, Blowup of nonlinear Schrödinger equations with inverse-square potentials, Differ. Equ. Appl., 6 (2014), 309-333.
doi: 10.7153/dea-06-17.![]() ![]() ![]() |
[22] |
T. Suzuki, Solvability of nonlinear Schrödinger equations with some critical singular potential via generalized Hardy-Rellich inequalities, Funkcial. Ekvac., 59 (2016), 1-34.
doi: 10.1619/fesi.59.1.![]() ![]() ![]() |
[23] |
T. Suzuki, Scattering theory for Hartree equations with inverse-square potentials, Appl. Anal., 96 (2017), 2032-2043.
doi: 10.1080/00036811.2016.1200720.![]() ![]() ![]() |
[24] |
T. Suzuki, Virial identities for nonlinear Schrödinger equations with an inverse-square potential of critical coefficient, Differ. Equ. Appl., 9 (2017), 327-352.
doi: 10.7153/dea-2017-09-24.![]() ![]() ![]() |
[25] |
K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., 110 (1987), 415-426.
doi: 10.1007/BF01212420.![]() ![]() ![]() |
[26] |
J. Zhang and J. Zheng, Scattering theory for nonlinear Schrödinger equations with inverse-square potential, J. Funct. Anal., 267 (2014), 2907-2932.
doi: 10.1016/j.jfa.2014.08.012.![]() ![]() ![]() |