[1]
|
M. Aassila, Stability of dynamic models of suspension bridges, Math. Nachr., 235 (2002), 5-15.
doi: 10.1002/1522-2616(200202)235:1<5::AID-MANA5>3.0.CO;2-J.
|
[2]
|
O. H. Amann, T. Von Karman and G. B. Wooddruff, The failure of the Tacoma narrows bridge, Federal Works Agency, Washington D.C., 1941.
|
[3]
|
A. Arena and W. Lacarbonara, Nonlinear parametric modeling of suspension bridges under aerolastic forces: torsional divergence and flutter, Nonlinear Dyn., 70 (2012), 2487-2510.
doi: 10.1007/s11071-012-0636-3.
|
[4]
|
G. Arioli and F. Gazzola, A new mathematical explanation of what triggered the catastrophic torsional mode of the Tacoma Narrows Bridge, Appl. Math. Model., 39 (2015), 901-912.
doi: 10.1016/j.apm.2014.06.022.
|
[5]
|
G. Arioli and F. Gazzola, Torsional instability in suspension bridges: The Tacoma Narrows Bridge case, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 342-357.
doi: 10.1016/j.cnsns.2016.05.028.
|
[6]
|
J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90.
doi: 10.1016/0022-247X(73)90121-2.
|
[7]
|
I. Bonicchio, C. Giorgi and E. Vuk, Long-term dynamics of the coupled suspension bridge system, Math. Models Methods Appl. Sci., 22 (2012), 1250021, 22pp.
doi: 10.1142/S0218202512500212.
|
[8]
|
M. Campo, J. R. Fernández, K. L. Kuttler, M. Shillor and J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Engrg., 196 (2006), 476-488.
doi: 10.1016/j.cma.2006.05.006.
|
[9]
|
P. G. Ciarlet, Basic error estimates for elliptic problems., in Handbook of Numerical Analysis (eds. P.G. Ciarlet and J.L. Lions), Elsevier, Ⅱ (1993), 17–351.
|
[10]
|
F. Dell'Oro, C. Giorgi and V. Pata, Asymptotic behaviour of coupled linear systems modeling suspension bridges, Z. Angew. Math. Phys., 66 (2015), 1095-1108.
doi: 10.1007/s00033-014-0414-9.
|
[11]
|
Z. Ding, Traveling waves in a suspension bridge system, SIAM J. Math. Anal., 35 (2003), 160-171.
doi: 10.1137/S0036141002412690.
|
[12]
|
P. Drábek, H. Holubová, A. Matas and P. Necesal, Nonlinear models of suspension bridges: discussion of the results, Appl. Math., 48 (2003), 497-514.
doi: 10.1023/B:APOM.0000024489.96314.7f.
|
[13]
|
A. Ferrero and F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst. Ser. A, 35 (2015), 5879-5908.
doi: 10.3934/dcds.2015.35.5879.
|
[14]
|
J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large scale nonlinear oscillations in suspension bridges, Z. Angew. Math. Phys., 40 (1989), 172-200.
doi: 10.1007/BF00944997.
|
[15]
|
D. Green and W. G. Unruh, The failure of the Tacoma bridge: A physical model, Amer. J. Phys., 74 (2006), 706-716.
doi: 10.1119/1.2201854.
|
[16]
|
G. Holubová-Tajcová, Mathematical modeling of suspension bridges, Math. Comput. Simul., 50 (1999), 183-197.
doi: 10.1016/S0378-4754(99)00071-3.
|
[17]
|
G. Holubová and A. Matas, Initial-boundary value problem for the nonlinear string-beam system, J. Math. Anal. Appl., 288 (2003), 784-802.
doi: 10.1016/j.jmaa.2003.09.028.
|
[18]
|
A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev., 32 (1990), 537-578.
doi: 10.1137/1032120.
|
[19]
|
H. Leiva, Exact controllability of the suspension bridge model proposed by Lazer and McKenna, J. Math. Anal. Appl., 309 (2005), 404-419.
doi: 10.1016/j.jmaa.2004.07.025.
|
[20]
|
J. Malík, Nonlinear models of suspension bridges, J. Math. Anal. Appl., 321 (2006), 828-850.
doi: 10.1016/j.jmaa.2005.08.080.
|
[21]
|
J. Malík, Sudden lateral asymmetry and torsional oscillations in the original Tacoma suspension bridge, J. Sound Vib., 332 (2013), 3772-3789.
|
[22]
|
J. Malík, Spectral analysis connected with suspension bridge systems, IMA J. Appl. Math., 81 (2016), 42-75.
doi: 10.1093/imamat/hxv027.
|
[23]
|
C. Marchionna and S. Panizzi, An instability result in the theory of suspension bridges, Nonlinear Anal., 140 (2016), 12-28.
doi: 10.1016/j.na.2016.03.003.
|
[24]
|
P. J. McKenna, Oscillations in suspension bridges, vertical and torsional, Discrete Contin. Dyn. Syst. Ser. S, 7 (2014), 785-791.
doi: 10.3934/dcdss.2014.7.785.
|
[25]
|
C. Zhong, Q. Ma and C. Sun, Existence of strong solutions and global attractors for the suspension bridge equations, Nonlinear Anal., 67 (2007), 442-454.
doi: 10.1016/j.na.2006.05.018.
|