September  2019, 8(3): 621-631. doi: 10.3934/eect.2019029

Periodic solutions for implicit evolution inclusions

1. 

Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece

2. 

Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia

3. 

Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków, Poland

4. 

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

5. 

Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana, Kardeljeva ploščad 16, 1000 Ljubljana, Slovenia

* Corresponding author: Vicenţiu D. Răadulescu

Received  August 2018 Revised  October 2018 Published  September 2019 Early access  May 2019

We consider a nonlinear implicit evolution inclusion driven by a nonlinear, nonmonotone, time-varying set-valued map and defined in the framework of an evolution triple of Hilbert spaces. Using an approximation technique and a surjectivity result for parabolic operators of monotone type, we show the existence of a periodic solution.

Citation: Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Periodic solutions for implicit evolution inclusions. Evolution Equations and Control Theory, 2019, 8 (3) : 621-631. doi: 10.3934/eect.2019029
References:
[1]

K. AndrewsK. Kuttler and M. Schillor, Second order evolution equations with dynamic boundary conditions, J. Math. Anal. Appl., 197 (1996), 781-795.  doi: 10.1006/jmaa.1996.0053.

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, The Netherlands, 1976. doi: 10.1007/978-1-4615-4665-8_17.

[3]

V. Barbu and A. Favini, Existence for implicit differential equations in Banach spaces, Atti Accad. Naz. Lincei Cl. Sci. Fiz. Mat. Natur. Rend. Mat. Appl., 3 (1992), 203-215. 

[4]

V. Barbu and A. Favini, Existence for an implicit differential equation, Nonlinear Anal., 32 (1998), 33-40.  doi: 10.1016/S0362-546X(97)00450-1.

[5]

E. DiBenedetto and R. Showalter, A pseudo-parabolic variational inequality and Stefan problem, Nonlinear Anal., 6 (1982), 279-291.  doi: 10.1016/0362-546X(82)90095-5.

[6]

A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl., 163 (1993), 353-384.  doi: 10.1007/BF01759029.

[7]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006.

[8]

L. Gasinski and N. S. Papageorgiou, Anti-periodic solutions for nonlinear evolution inclusions, J. E Equ., 18 (2018), 1025-1047.  doi: 10.1007/s00028-018-0431-9.

[9]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume Ⅰ: Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4.

[10]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.

[11]

Z. Liu, Existence for implicit differential equations with nonmonotone perturbations, Israel J. Math., 129 (2002), 363-372.  doi: 10.1007/BF02773170.

[12]

N.S. PapageorgiouF. Papalini and F. Renzacci, Existence of solutions and periodic solutions for nonlinear evolution inclusions, Rend. Circ. Mat. Palermo, 48 (1999), 341-364.  doi: 10.1007/BF02857308.

[13]

N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Control Theory, 6 (2017), 277-297.  doi: 10.3934/eect.2017015.

[14]

N. S. PapageorgiouV. D. Rădulescu and D. D. Repovš, Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions, Adv. Nonlinear Anal., 6 (2017), 199-235.  doi: 10.1515/anona-2016-0096.

[15]

R. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, Math. Surveys and Monographs, 49, American Math. Soc., Providence, RI, 1997.

[16]

E. Zeidler, Nonlinear Functional Analysis and its Applications Ⅱ/B, Springer, New York, 1990. doi: 10.1007/978-1-4612-0985-0.

show all references

References:
[1]

K. AndrewsK. Kuttler and M. Schillor, Second order evolution equations with dynamic boundary conditions, J. Math. Anal. Appl., 197 (1996), 781-795.  doi: 10.1006/jmaa.1996.0053.

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, The Netherlands, 1976. doi: 10.1007/978-1-4615-4665-8_17.

[3]

V. Barbu and A. Favini, Existence for implicit differential equations in Banach spaces, Atti Accad. Naz. Lincei Cl. Sci. Fiz. Mat. Natur. Rend. Mat. Appl., 3 (1992), 203-215. 

[4]

V. Barbu and A. Favini, Existence for an implicit differential equation, Nonlinear Anal., 32 (1998), 33-40.  doi: 10.1016/S0362-546X(97)00450-1.

[5]

E. DiBenedetto and R. Showalter, A pseudo-parabolic variational inequality and Stefan problem, Nonlinear Anal., 6 (1982), 279-291.  doi: 10.1016/0362-546X(82)90095-5.

[6]

A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl., 163 (1993), 353-384.  doi: 10.1007/BF01759029.

[7]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9. Chapman & Hall/CRC, Boca Raton, FL, 2006.

[8]

L. Gasinski and N. S. Papageorgiou, Anti-periodic solutions for nonlinear evolution inclusions, J. E Equ., 18 (2018), 1025-1047.  doi: 10.1007/s00028-018-0431-9.

[9]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume Ⅰ: Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. doi: 10.1007/978-1-4615-6359-4.

[10]

J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Gauthier-Villars, Paris, 1969.

[11]

Z. Liu, Existence for implicit differential equations with nonmonotone perturbations, Israel J. Math., 129 (2002), 363-372.  doi: 10.1007/BF02773170.

[12]

N.S. PapageorgiouF. Papalini and F. Renzacci, Existence of solutions and periodic solutions for nonlinear evolution inclusions, Rend. Circ. Mat. Palermo, 48 (1999), 341-364.  doi: 10.1007/BF02857308.

[13]

N. S. Papageorgiou and V. D. Rădulescu, Periodic solutions for time-dependent subdifferential evolution inclusions, Evol. Equ. Control Theory, 6 (2017), 277-297.  doi: 10.3934/eect.2017015.

[14]

N. S. PapageorgiouV. D. Rădulescu and D. D. Repovš, Sensitivity analysis for optimal control problems governed by nonlinear evolution inclusions, Adv. Nonlinear Anal., 6 (2017), 199-235.  doi: 10.1515/anona-2016-0096.

[15]

R. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations, Math. Surveys and Monographs, 49, American Math. Soc., Providence, RI, 1997.

[16]

E. Zeidler, Nonlinear Functional Analysis and its Applications Ⅱ/B, Springer, New York, 1990. doi: 10.1007/978-1-4612-0985-0.

[1]

Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763

[2]

A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial and Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233

[3]

Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 373-393. doi: 10.3934/naco.2021011

[4]

Gang Cai, Yekini Shehu, Olaniyi S. Iyiola. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2873-2902. doi: 10.3934/jimo.2021095

[5]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[6]

Wacław Marzantowicz, Justyna Signerska. Firing map of an almost periodic input function. Conference Publications, 2011, 2011 (Special) : 1032-1041. doi: 10.3934/proc.2011.2011.1032

[7]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial and Management Optimization, 2022, 18 (2) : 773-794. doi: 10.3934/jimo.2020178

[8]

Shaotao Hu, Yuanheng Wang, Bing Tan, Fenghui Wang. Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022060

[9]

Alessandra Celletti, Sara Di Ruzza. Periodic and quasi--periodic orbits of the dissipative standard map. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 151-171. doi: 10.3934/dcdsb.2011.16.151

[10]

Piernicola Bettiol, Hélène Frankowska. Lipschitz regularity of solution map of control systems with multiple state constraints. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 1-26. doi: 10.3934/dcds.2012.32.1

[11]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[12]

Wacław Marzantowicz, Piotr Maciej Przygodzki. Finding periodic points of a map by use of a k-adic expansion. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 495-514. doi: 10.3934/dcds.1999.5.495

[13]

Francisco Balibrea, J.L. García Guirao, J.I. Muñoz Casado. A triangular map on $I^{2}$ whose $\omega$-limit sets are all compact intervals of $\{0\}\times I$. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 983-994. doi: 10.3934/dcds.2002.8.983

[14]

Mohammad Eslamian, Ahmad Kamandi. A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021210

[15]

Sergiu Aizicovici, Simeon Reich. Anti-periodic solutions to a class of non-monotone evolution equations. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 35-42. doi: 10.3934/dcds.1999.5.35

[16]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[17]

Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403

[18]

Richard Evan Schwartz. Outer billiards and the pinwheel map. Journal of Modern Dynamics, 2011, 5 (2) : 255-283. doi: 10.3934/jmd.2011.5.255

[19]

Valentin Ovsienko, Richard Schwartz, Serge Tabachnikov. Quasiperiodic motion for the pentagram map. Electronic Research Announcements, 2009, 16: 1-8. doi: 10.3934/era.2009.16.1

[20]

John Erik Fornæss, Brendan Weickert. A quantized henon map. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 723-740. doi: 10.3934/dcds.2000.6.723

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (188)
  • HTML views (322)
  • Cited by (3)

[Back to Top]