[1]
|
A. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine. Angew. Math., 325 (1981), 105-144.
doi: 10.1515/crll.1981.325.105.
|
[2]
|
H. Azegami, Second derivatives of cost functions and $H^1$ Newton method in shape optimization problems, Mathematical Analysis of Continuum Mechanics and Industrial Applications Ⅱ, in Proceedings of the International Conference CoMFoS16 (eds. P. van Meurs, M. Kimura and H. Notsu), vol. 30 of Mathematics for Industry, Springer, Singapore, (2017), 61–72.
doi: 10.1007/978-981-10-6283-4_6.
|
[3]
|
H. Azegami, Shape Optimization Problems, Morikita Publishing Co., Ltd., Tokyo, 2016 (in Japanese).
|
[4]
|
H. Azegami, Solution of shape optimization problem and its application to product design, Mathematical Analysis of Continuum Mechanics and Industrial Applications, in Computer Aided Optimization Design of Structures IV, Structural Optimization (eds. H. Itou, M. Kimura, V. Chalupecký, K. Ohtsuka, D. Tagami and A. Takada), vol. 26 of Mathematics for Industry, Springer, Singapore, (2017), 83–98.
doi: 10.1007/978-981-10-2633-1_6.
|
[5]
|
H. Azegami, S. Kaizu, M. Shimoda and E. Katamine, Irregularity of shape optimization problems and an improvement technique, in Computer Aided Optimization Design of Structures IV, Structural Optimization (eds. S. Hernandez and C. A. Brebbia), Computational Mechanics Publications, Southampton, (1997), 309–326.
doi: 10.2495/OP970301.
|
[6]
|
H. Azegami and Z. Q. Wu, Domain optimization analysis in linear elastic problems: Approach using traction method, SME Int. J., Ser. A., 39 (1996), 272-278.
doi: 10.1299/jsmea1993.39.2_272.
|
[7]
|
H. Azegami, M. Shimoda, E. Katamine and Z. C. Wu, A domain optimization technique for elliptic boundary value problems, in Computer Aided Optimization Design of Structures IV, Structural Optimization (eds. S. Hernandez, M. El-Sayed and C. A. Brebbia), Computational Mechanics Publications, Southampton, (1995), 51–58.
doi: 10.2495/OP950071.
|
[8]
|
H. Azegami, Solution to domain optimization problems, Trans. Jpn. Soc. Mech. Eng., Ser. A., 60 (1994), 1479–1486 (in Japanese).
doi: 10.1299/kikaia.60.1479.
|
[9]
|
J. B. Bacani, Methods of Shape Optimization in Free Boundary Problems, Ph.D. Thesis, Karl-Franzens-Universität-Graz, 2013.
|
[10]
|
J. B. Bacani and G. Peichl, On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem, Abstr. Appl. Anal., 2013 (2013), Art. ID 384320, 19pp.
doi: 10.1155/2013/384320.
|
[11]
|
A. Ben Abda, F. Bouchon, G. Peichl, M. Sayeh and R. Touzani, A Dirichlet-Neumann cost functional approach for the Bernoulli problem, J. Eng. Math., 81 (2013), 157-176.
doi: 10.1007/s10665-012-9608-3.
|
[12]
|
A. Boulkhemair, A. Nachaoui and A. Chakib, A shape optimization approach for a class of free boundary problems of Bernoulli type, Appl. Math., 58 (2013), 205-221.
doi: 10.1007/s10492-013-0010-x.
|
[13]
|
A. Boulkhemair, A. Chakib and A. Nachaoui, Uniform trace theorem and application to shape optimization, Appl. Comput. Math., 7 (2008), 192-205.
|
[14]
|
A. Boulkhemair and A. Chakib, On the uniform Poincaré inequality, Commun. Partial Differ. Equations, 32 (2007), 1439-1447.
doi: 10.1080/03605300600910241.
|
[15]
|
D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., 52 (1975), 189-219.
doi: 10.1016/0022-247X(75)90091-8.
|
[16]
|
M. Dambrine, On variations of the shape Hessian and sufficient conditions for the stability of critical shapes, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat., 96 (2002), 95-121.
|
[17]
|
M. Dambrine and M. Pierre, About stability of equilibrium shapes, Model Math. Anal. Numer., 34 (2000), 811-834.
doi: 10.1051/m2an:2000105.
|
[18]
|
M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd edition, Adv. Des. Control 22, SIAM, Philadelphia, 2011.
doi: 10.1137/1.9780898719826.
|
[19]
|
K. Eppler and H. Harbrecht, On a Kohn-Vogelius like formulation of free boundary problems, Comput. Optim. App., 52 (2012), 69-85.
doi: 10.1007/s10589-010-9345-3.
|
[20]
|
K. Eppler and H. Harbrecht, A regularized Newton method in electrical impedance tomography using shape Hessian information, Control Cybern., 34 (2005), 203-225.
|
[21]
|
K. Eppler, Boundary integral representations of second derivatives in shape optimization, Discuss. Math. Differ. Incl. Control. Optim., 20 (2000), 63-78.
doi: 10.7151/dmdico.1005.
|
[22]
|
K. Eppler, Optimal shape design for elliptic equations via BIE-methods, J. Appl. Math. Comput. Sci., 10 (2000), 487-516.
|
[23]
|
A. Fasano, Some free boundary problems with industrial applications, in Shape Optimization and Free Boundaries (eds. M. C. Delfour and G. Sabidussi), vol. 380 of NATO ASI Series (C: Mathematical and Physical Sciences), Springer, Dordrecht, (1992), 113–142.
doi: 10.1007/978-94-011-2710-3_3.
|
[24]
|
M. Flucher and M. Rumpf, Bernoulli's free-boundary problem, qualitative theory and numerical approximation, J. Reine. Angew. Math., 486 (1997), 165-204.
doi: 10.1515/crll.1997.486.165.
|
[25]
|
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin-New York, 1977.
doi: 10.1007/978-3-642-61798-0.
|
[26]
|
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing, Marshfield, Massachusetts, 1985.
doi: 10.1137/1.9781611972030.
|
[27]
|
J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation, SIAM, Philadelphia, 2003.
doi: 10.1137/1.9780898718690.
|
[28]
|
J. Haslinger, T. Kozubek, K. Kunisch and G. Peichl, An embedding domain approach for a class of 2-d shape optimization problems: Mathematical analysis, J. Math. Anal. Appl., 290 (2004), 665-685.
doi: 10.1016/j.jmaa.2003.10.038.
|
[29]
|
F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.
doi: 10.1515/jnum-2012-0013.
|
[30]
|
A. Henrot and M. Pierre, Shape Variation and Optimization: A Geometrical Analysis, Tracts in Mathematics 28, European Mathematical Society, Zürich, 2018.
doi: 10.4171/178.
|
[31]
|
K. Ito, K. Kunisch and G. Peichl, Variational approach to shape derivatives, ESAIM Control Optim. Calc. Var., 14 (2008), 517-539.
doi: 10.1051/cocv:2008002.
|
[32]
|
T. Kashiwabara, C. M. Colciago, L. Dedè and A. Quarteroni, Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem, SIAM J. Numer. Anal., 53 (2015), 105-126.
doi: 10.1137/140954477.
|
[33]
|
R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Commun. Pure Appl., 37 (1984), 289-298.
doi: 10.1002/cpa.3160370302.
|
[34]
|
R. Kress, On Trefftz' integral equation for the Bernoulli free boundary value problem, Numer. Math., 136 (2017), 503-522.
doi: 10.1007/s00211-016-0847-5.
|
[35]
|
J. Nečas, Direct Methods in the Theory of Elliptic Equations, Corrected 2nd edition, Monographs and Studies in Mathematics, Springer, Berlin, Heidelberg, 2012.
doi: 10.1007/978-3-642-10455-8.
|
[36]
|
J. W. Neuberger, Sobolev Gradients and Differential Equations, Springer-Verlag, Berlin, 1997.
doi: 10.1007/BFb0092831.
|
[37]
|
A. Novruzi and M. Pierre, Structure of shape derivatives, J. Evol. Equ., 2 (2002), 365-382.
doi: 10.1007/s00028-002-8093-y.
|
[38]
|
A. Novruzi and J.-R. Roche, Newton's method in shape optimisation: A three-dimensional case, BIT Numer. Math., 40 (2000), 102-120.
doi: 10.1023/A:1022370419231.
|
[39]
|
S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2.
|
[40]
|
A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, vol. 37 of Texts in Applied Mathematics, 2nd edition, Springer, Berlin, 2007.
doi: 10.1007/b98885.
|
[41]
|
J. F. T. Rabago and H. Azegami, An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data, J. Eng. Math., (2019), to appear.
|
[42]
|
J. F. T. Rabago and J. B. Bacani, Shape optimization approach to the Bernoulli problem: A Lagrangian formulation, IAENG Int. J. Appl. Math., 47 (2017), 417-424.
|
[43]
|
J. F. T. Rabago and J. B. Bacani, Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: a Lagrangian formulation, Commun. Pur. Appl. Anal., 17 (2018), 2683-2702.
doi: 10.3934/cpaa.2018127.
|
[44]
|
J. Simon, Second variation for domain optimization problems, in Control and Estimation of Distributed Parameter Systems (eds. F. Kappel, K. Kunisch and W. Schappacher), International Series of Numerical Mathematics, no 91. Birkhäuser, (1989), 361–378.
|
[45]
|
J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, in Introduction to Shape Optimization, vol. 16 of Springer Series in Computational Mathematics, Springer, Berlin, Heidelberg, 1992.
doi: 10.1007/978-3-642-58106-9_1.
|
[46]
|
T. Tiihonen, Shape optimization and trial methods for free boundary problems, RAIRO Modél. Math. Anal. Numér., 31 (1997), 805-825.
doi: 10.1051/m2an/1997310708051.
|