
- Previous Article
- EECT Home
- This Issue
-
Next Article
Existence and extinction in finite time for Stratonovich gradient noise porous media equations
Sliding mode control of the Hodgkin–Huxley mathematical model
1. | Dipartimento di Matematica "F. Enriques", Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy |
2. | "Gheorghe Mihoc-Caius Iacob" Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, Calea 13 Septembrie 13, Bucharest, Romania |
3. | Research Group of the Project PN-Ⅲ-P4-ID-PCE-2016-0372, Simion Stoilow Institute of Mathematics of the Romanian Academy, Bucharest, Romania |
4. | Istituto di Matematica Applicata e Tecnologie Informatiche "E. Magenes", CNR, Via Ferrata 1, 27100 Pavia, Italy |
In this paper we deal with a feedback control design for the action potential of a neuronal membrane in relation with the non-linear dynamics of the Hodgkin-Huxley mathematical model. More exactly, by using an external current as a control expressed by a relay graph in the equation of the potential, we aim at forcing it to reach a certain manifold in finite time and to slide on it after that. From the mathematical point of view we solve a system involving a parabolic differential inclusion and three nonlinear differential equations via an approximating technique and a fixed point result. The existence of the sliding mode and the determination of the time at which the potential reaches the prescribed manifold are proved by a maximum principle argument. Numerical simulations are presented.
References:
[1] |
V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer, New York, 2010.
doi: 10.1007/978-1-4419-5542-5. |
[2] |
V. Barbu, P. Colli, G. Gilardi, G. Marinoschi and E. Rocca,
Sliding mode control for a nonlinear phase-field system, SIAM J. Control Optim., 55 (2017), 2108-2133.
doi: 10.1137/15M102424X. |
[3] |
E. N. Best,
Null space in the Hodgkin-Huxley equations, A critical test, Biophys. J., 27 (1979), 87-104.
doi: 10.1016/S0006-3495(79)85204-2. |
[4] |
C. Cavaterra and M. Grasselli,
Robust exponential attractors for singularly perturbed Hodgkin-Huxley equations, J. Differential Equations, 246 (2009), 4670-4701.
doi: 10.1016/j.jde.2008.12.025. |
[5] |
F. R. Chavarette, J. M. Balthazar, M. Rafikov and H. A. Hermini,
On non-linear dynamics and an optimal control synthesis of the action potential of membranes (ideal and non-ideal cases) of the Hodgkin-Huxley (HH) mathematical model, Chaos, Solitons and Fractals, 39 (2009), 1651-1666.
doi: 10.1016/j.chaos.2007.06.016. |
[6] |
Y. Che, J. Wang, B. Deng, X. Wei and C. Han,
Bifurcations in the hodgkin–huxley model exposed to DC electric fields, Neurocomputing, 81 (2012), 41-48.
doi: 10.1016/j.neucom.2011.11.019. |
[7] |
Y. Che, B. Liu, H. Li, M. Lu, J. Wang and X. Wei,
Robust stabilization control of bifurcations in Hodgkin-Huxley model with aid of unscented Kalman filter, Chaos, Solitons and Fractals, 101 (2017), 92-99.
doi: 10.1016/j.chaos.2017.04.045. |
[8] |
P. Colli, M. Colturato, Global existence for a singular phase field system related to a sliding mode control problem, Nonlinear Anal. Real World Appl. 41 (2018), 128-151.
doi: 10.1016/j.nonrwa.2017.10.011. |
[9] |
P. Colli, G. Gilardi, G. Marinoschi and E. Rocca,
Sliding mode control for phase field system related to tumor growth, Appl. Math.Optimiz., 79 (2019), 647-670.
doi: 10.1007/s00245-017-9451-z. |
[10] |
J. Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory, Cambridge Univ. Press, Cambridge, 1987.
doi: 10.1017/CBO9780511983955.![]() ![]() ![]() |
[11] |
J. R. Dormand and P. J. Prince,
A family of embedded Runge-Kutta formulae, J. Comp. Appl. Math., 6 (1980), 19-26.
doi: 10.1016/0771-050X(80)90013-3. |
[12] |
R. Ozgur Doruk,
Feedback controlled electrical nerve stimulation: A computer simulation, Computer Methods and Programs in Biomedicine, 99 (2010), 98-112.
doi: 10.1016/j.cmpb.2010.01.006. |
[13] |
R. Ozgur Doruk,
Control of repetitive firing in Hodgkin-Huxley nerve fibers using electric fields, Chaos, Solitons & Fractals, 52 (2013), 66-72.
doi: 10.1016/j.chaos.2013.04.003. |
[14] |
J. W. Evans,
Nerve axon equations Ⅰ: Linear approximations, Indiana Univ. Math. J., 21 (1972), 877-885.
doi: 10.1512/iumj.1972.21.21071. |
[15] |
J. W. Evans,
Nerve axon equations Ⅱ: stability at rest, Indiana Univ. Math. J., 22 (1972), 75-90.
doi: 10.1512/iumj.1973.22.22009. |
[16] |
J. W. Evans,
Nerve axon equations Ⅲ: stability of the nerve impulse, Indiana Univ. Math. J., 22 (1972), 577-593.
doi: 10.1512/iumj.1973.22.22048. |
[17] |
J. W. Evans and N. A. Shenk,
Solutions to axon equations, Biophys. J., 10 (1970), 1090-1101.
doi: 10.1016/S0006-3495(70)86355-X. |
[18] |
W. E. Fitzgibbon, M.E. Parrott, Y.You, Global dynamics of singularly perturbed Hodgkin-Huxley equations, In: Semigroups of Linear and Nonlinear Operations and Applications (eds. G. Ruiz Goldstein, J. Goldstein), Springer Science+ Business Media B.V., Dordrecht, (1993), 159–176. |
[19] |
W. E. Fitzgibbon, M. E. Parrott and Y. You,
Finite dimensionality and uppper semicontinuity of the global attractor of singularly perturbed Hodgkin Huxley systems, J. Diff. Equations, 129 (1996), 193-237.
doi: 10.1006/jdeq.1996.0116. |
[20] |
A. L. Hodgkin and A. F. Huxley,
A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544.
|
[21] |
J. L. Lions, Quelques Méthodes de R ésolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. |
[22] |
M. Mascagni,
An initial–boundary value problem of physiological significance for equations of nerve conduction, Comm. Pure Appl. Math., 42 (1989), 213-227.
doi: 10.1002/cpa.3160420206. |
[23] |
L. F. Shampine and M. W. Reichelt,
The MATLAB ODE Suite, SIAM Journal on Scientific Computing, 18 (1997), 1-22.
doi: 10.1137/S1064827594276424. |
[24] |
R. D. Skeel and M. Berzins,
A method for the spatial discretization of parabolic equations in one space variable, SIAM Journal on Scientific and Statistical Computing, 11 (1990), 1-32.
doi: 10.1137/0911001. |
show all references
References:
[1] |
V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer, New York, 2010.
doi: 10.1007/978-1-4419-5542-5. |
[2] |
V. Barbu, P. Colli, G. Gilardi, G. Marinoschi and E. Rocca,
Sliding mode control for a nonlinear phase-field system, SIAM J. Control Optim., 55 (2017), 2108-2133.
doi: 10.1137/15M102424X. |
[3] |
E. N. Best,
Null space in the Hodgkin-Huxley equations, A critical test, Biophys. J., 27 (1979), 87-104.
doi: 10.1016/S0006-3495(79)85204-2. |
[4] |
C. Cavaterra and M. Grasselli,
Robust exponential attractors for singularly perturbed Hodgkin-Huxley equations, J. Differential Equations, 246 (2009), 4670-4701.
doi: 10.1016/j.jde.2008.12.025. |
[5] |
F. R. Chavarette, J. M. Balthazar, M. Rafikov and H. A. Hermini,
On non-linear dynamics and an optimal control synthesis of the action potential of membranes (ideal and non-ideal cases) of the Hodgkin-Huxley (HH) mathematical model, Chaos, Solitons and Fractals, 39 (2009), 1651-1666.
doi: 10.1016/j.chaos.2007.06.016. |
[6] |
Y. Che, J. Wang, B. Deng, X. Wei and C. Han,
Bifurcations in the hodgkin–huxley model exposed to DC electric fields, Neurocomputing, 81 (2012), 41-48.
doi: 10.1016/j.neucom.2011.11.019. |
[7] |
Y. Che, B. Liu, H. Li, M. Lu, J. Wang and X. Wei,
Robust stabilization control of bifurcations in Hodgkin-Huxley model with aid of unscented Kalman filter, Chaos, Solitons and Fractals, 101 (2017), 92-99.
doi: 10.1016/j.chaos.2017.04.045. |
[8] |
P. Colli, M. Colturato, Global existence for a singular phase field system related to a sliding mode control problem, Nonlinear Anal. Real World Appl. 41 (2018), 128-151.
doi: 10.1016/j.nonrwa.2017.10.011. |
[9] |
P. Colli, G. Gilardi, G. Marinoschi and E. Rocca,
Sliding mode control for phase field system related to tumor growth, Appl. Math.Optimiz., 79 (2019), 647-670.
doi: 10.1007/s00245-017-9451-z. |
[10] |
J. Cronin, Mathematical Aspects of Hodgkin-Huxley Neural Theory, Cambridge Univ. Press, Cambridge, 1987.
doi: 10.1017/CBO9780511983955.![]() ![]() ![]() |
[11] |
J. R. Dormand and P. J. Prince,
A family of embedded Runge-Kutta formulae, J. Comp. Appl. Math., 6 (1980), 19-26.
doi: 10.1016/0771-050X(80)90013-3. |
[12] |
R. Ozgur Doruk,
Feedback controlled electrical nerve stimulation: A computer simulation, Computer Methods and Programs in Biomedicine, 99 (2010), 98-112.
doi: 10.1016/j.cmpb.2010.01.006. |
[13] |
R. Ozgur Doruk,
Control of repetitive firing in Hodgkin-Huxley nerve fibers using electric fields, Chaos, Solitons & Fractals, 52 (2013), 66-72.
doi: 10.1016/j.chaos.2013.04.003. |
[14] |
J. W. Evans,
Nerve axon equations Ⅰ: Linear approximations, Indiana Univ. Math. J., 21 (1972), 877-885.
doi: 10.1512/iumj.1972.21.21071. |
[15] |
J. W. Evans,
Nerve axon equations Ⅱ: stability at rest, Indiana Univ. Math. J., 22 (1972), 75-90.
doi: 10.1512/iumj.1973.22.22009. |
[16] |
J. W. Evans,
Nerve axon equations Ⅲ: stability of the nerve impulse, Indiana Univ. Math. J., 22 (1972), 577-593.
doi: 10.1512/iumj.1973.22.22048. |
[17] |
J. W. Evans and N. A. Shenk,
Solutions to axon equations, Biophys. J., 10 (1970), 1090-1101.
doi: 10.1016/S0006-3495(70)86355-X. |
[18] |
W. E. Fitzgibbon, M.E. Parrott, Y.You, Global dynamics of singularly perturbed Hodgkin-Huxley equations, In: Semigroups of Linear and Nonlinear Operations and Applications (eds. G. Ruiz Goldstein, J. Goldstein), Springer Science+ Business Media B.V., Dordrecht, (1993), 159–176. |
[19] |
W. E. Fitzgibbon, M. E. Parrott and Y. You,
Finite dimensionality and uppper semicontinuity of the global attractor of singularly perturbed Hodgkin Huxley systems, J. Diff. Equations, 129 (1996), 193-237.
doi: 10.1006/jdeq.1996.0116. |
[20] |
A. L. Hodgkin and A. F. Huxley,
A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544.
|
[21] |
J. L. Lions, Quelques Méthodes de R ésolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. |
[22] |
M. Mascagni,
An initial–boundary value problem of physiological significance for equations of nerve conduction, Comm. Pure Appl. Math., 42 (1989), 213-227.
doi: 10.1002/cpa.3160420206. |
[23] |
L. F. Shampine and M. W. Reichelt,
The MATLAB ODE Suite, SIAM Journal on Scientific Computing, 18 (1997), 1-22.
doi: 10.1137/S1064827594276424. |
[24] |
R. D. Skeel and M. Berzins,
A method for the spatial discretization of parabolic equations in one space variable, SIAM Journal on Scientific and Statistical Computing, 11 (1990), 1-32.
doi: 10.1137/0911001. |






[1] |
Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations and Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579 |
[2] |
Cătălin-George Lefter, Elena-Alexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 777-787. doi: 10.3934/mcrf.2018034 |
[3] |
Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063 |
[4] |
Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations and Control Theory, 2021, 10 (4) : 701-722. doi: 10.3934/eect.2020087 |
[5] |
Jorge Ferreira, Hermenegildo Borges de Oliveira. Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2431-2453. doi: 10.3934/dcds.2017105 |
[6] |
Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375 |
[7] |
Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control and Related Fields, 2022, 12 (2) : 405-420. doi: 10.3934/mcrf.2021027 |
[8] |
Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581 |
[9] |
Aymen Balti, Valentina Lanza, Moulay Aziz-Alaoui. A multi-base harmonic balance method applied to Hodgkin-Huxley model. Mathematical Biosciences & Engineering, 2018, 15 (3) : 807-825. doi: 10.3934/mbe.2018036 |
[10] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[11] |
Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006 |
[12] |
Dongyun Wang. Sliding mode observer based control for T-S fuzzy descriptor systems. Mathematical Foundations of Computing, 2022, 5 (1) : 17-32. doi: 10.3934/mfc.2021017 |
[13] |
Ramasamy Kavikumar, Boomipalagan Kaviarasan, Yong-Gwon Lee, Oh-Min Kwon, Rathinasamy Sakthivel, Seong-Gon Choi. Robust dynamic sliding mode control design for interval type-2 fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1839-1858. doi: 10.3934/dcdss.2022014 |
[14] |
Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085 |
[15] |
Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial and Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303 |
[16] |
Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353 |
[17] |
Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673 |
[18] |
Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23 |
[19] |
Elena-Alexandra Melnig. Internal feedback stabilization for parabolic systems coupled in zero or first order terms. Evolution Equations and Control Theory, 2021, 10 (2) : 333-351. doi: 10.3934/eect.2020069 |
[20] |
Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]