Article Contents
Article Contents

Sliding mode control of the Hodgkin–Huxley mathematical model

• * Corresponding author: Gabriela Marinoschi
• In this paper we deal with a feedback control design for the action potential of a neuronal membrane in relation with the non-linear dynamics of the Hodgkin-Huxley mathematical model. More exactly, by using an external current as a control expressed by a relay graph in the equation of the potential, we aim at forcing it to reach a certain manifold in finite time and to slide on it after that. From the mathematical point of view we solve a system involving a parabolic differential inclusion and three nonlinear differential equations via an approximating technique and a fixed point result. The existence of the sliding mode and the determination of the time at which the potential reaches the prescribed manifold are proved by a maximum principle argument. Numerical simulations are presented.

Mathematics Subject Classification: Primary: 35K55, 35K57, 35Q92; Secondary: 93B52, 92C30.

 Citation:

• Figure 1.  Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ (right) for $v_0 = 4.82$, $v^* = 0$, $\rho = 0$

Figure 2.  Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ (right) for $v_0 = 4.82$, $v^* = 0$, $\rho = 20$

Figure 3.  Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ (right) for $v_0 = 4.82$, $v^* = 0.5\sin(4/\pi *t)+0.6$, $\rho = 20$

Figure 4.  Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ (right) for $v_0 = 4.82$, $v^* = 0$, $\rho = 0$, $g_K = 3.8229$

Figure 5.  Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ (right) for $v_0 = 4.82$, $v^* = 0$, $\rho = 20$, $g_K = 3.8229$

Figure 6.  Graphics $v(t, 0)$ (left), $v(t, x)$ (center), $n$, $m$, $h$ at $x = 0.5$ (right) for $v_0 = 0.5sin(4\pi x)+0.6$, $v^* = 0$, $\delta = 50$, $g_K = 36$, $\rho = 50$

•  [1] V. Barbu, Nonlinear Differential Equations of Monotone Type in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5. [2] V. Barbu, P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Sliding mode control for a nonlinear phase-field system, SIAM J. Control Optim., 55 (2017), 2108-2133.  doi: 10.1137/15M102424X. [3] E. N. Best, Null space in the Hodgkin-Huxley equations, A critical test, Biophys. J., 27 (1979), 87-104.  doi: 10.1016/S0006-3495(79)85204-2. [4] C. Cavaterra and M. Grasselli, Robust exponential attractors for singularly perturbed Hodgkin-Huxley equations, J. Differential Equations, 246 (2009), 4670-4701.  doi: 10.1016/j.jde.2008.12.025. [5] F. R. Chavarette, J. M. Balthazar, M. Rafikov and H. A. Hermini, On non-linear dynamics and an optimal control synthesis of the action potential of membranes (ideal and non-ideal cases) of the Hodgkin-Huxley (HH) mathematical model, Chaos, Solitons and Fractals, 39 (2009), 1651-1666.  doi: 10.1016/j.chaos.2007.06.016. [6] Y. Che, J. Wang, B. Deng, X. Wei and C. Han, Bifurcations in the hodgkin–huxley model exposed to DC electric fields, Neurocomputing, 81 (2012), 41-48.  doi: 10.1016/j.neucom.2011.11.019. [7] Y. Che, B. Liu, H. Li, M. Lu, J. Wang and X. Wei, Robust stabilization control of bifurcations in Hodgkin-Huxley model with aid of unscented Kalman filter, Chaos, Solitons and Fractals, 101 (2017), 92-99.  doi: 10.1016/j.chaos.2017.04.045. [8] P. Colli, M. Colturato, Global existence for a singular phase field system related to a sliding mode control problem, Nonlinear Anal. Real World Appl. 41 (2018), 128-151. doi: 10.1016/j.nonrwa.2017.10.011. [9] P. Colli, G. Gilardi, G. Marinoschi and E. Rocca, Sliding mode control for phase field system related to tumor growth, Appl. Math.Optimiz., 79 (2019), 647-670.  doi: 10.1007/s00245-017-9451-z. [10] J. Cronin,  Mathematical Aspects of Hodgkin-Huxley Neural Theory, Cambridge Univ. Press, Cambridge, 1987.  doi: 10.1017/CBO9780511983955. [11] J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formulae, J. Comp. Appl. Math., 6 (1980), 19-26.  doi: 10.1016/0771-050X(80)90013-3. [12] R. Ozgur Doruk, Feedback controlled electrical nerve stimulation: A computer simulation, Computer Methods and Programs in Biomedicine, 99 (2010), 98-112.  doi: 10.1016/j.cmpb.2010.01.006. [13] R. Ozgur Doruk, Control of repetitive firing in Hodgkin-Huxley nerve fibers using electric fields, Chaos, Solitons & Fractals, 52 (2013), 66-72.  doi: 10.1016/j.chaos.2013.04.003. [14] J. W. Evans, Nerve axon equations Ⅰ: Linear approximations, Indiana Univ. Math. J., 21 (1972), 877-885.  doi: 10.1512/iumj.1972.21.21071. [15] J. W. Evans, Nerve axon equations Ⅱ: stability at rest, Indiana Univ. Math. J., 22 (1972), 75-90.  doi: 10.1512/iumj.1973.22.22009. [16] J. W. Evans, Nerve axon equations Ⅲ: stability of the nerve impulse, Indiana Univ. Math. J., 22 (1972), 577-593.  doi: 10.1512/iumj.1973.22.22048. [17] J. W. Evans and N. A. Shenk, Solutions to axon equations, Biophys. J., 10 (1970), 1090-1101.  doi: 10.1016/S0006-3495(70)86355-X. [18] W. E. Fitzgibbon, M.E. Parrott, Y.You, Global dynamics of singularly perturbed Hodgkin-Huxley equations, In: Semigroups of Linear and Nonlinear Operations and Applications (eds. G. Ruiz Goldstein, J. Goldstein), Springer Science+ Business Media B.V., Dordrecht, (1993), 159–176. [19] W. E. Fitzgibbon, M. E. Parrott and Y. You, Finite dimensionality and uppper semicontinuity of the global attractor of singularly perturbed Hodgkin Huxley systems, J. Diff. Equations, 129 (1996), 193-237.  doi: 10.1006/jdeq.1996.0116. [20] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544. [21] J. L. Lions, Quelques Méthodes de R ésolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. [22] M. Mascagni, An initial–boundary value problem of physiological significance for equations of nerve conduction, Comm. Pure Appl. Math., 42 (1989), 213-227.  doi: 10.1002/cpa.3160420206. [23] L. F. Shampine and M. W. Reichelt, The MATLAB ODE Suite, SIAM Journal on Scientific Computing, 18 (1997), 1-22.  doi: 10.1137/S1064827594276424. [24] R. D. Skeel and M. Berzins, A method for the spatial discretization of parabolic equations in one space variable, SIAM Journal on Scientific and Statistical Computing, 11 (1990), 1-32.  doi: 10.1137/0911001.

Figures(6)