June  2020, 9(2): 359-373. doi: 10.3934/eect.2020009

Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping

Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Corresponding author: Ti-Jun Xiao

Received  January 2019 Revised  April 2019 Published  June 2020 Early access  August 2019

Fund Project: The work was supported partly by the NSF of China (11771091, 11831011), the Fudan University (IDH 1411016), and the Shanghai Key Laboratory for Contemporary Applied Mathematics (08DZ2271900)

The paper is concerned with the Cauchy problem for second order hyperbolic evolution equations with nonlinear source in a Hilbert space, under the effect of nonlinear time-dependent damping. With the help of the method of weighted energy integral, we obtain explicit decay rate estimates for the solutions of the equation in terms of the damping coefficient and two nonlinear exponents. Specialized to the case of linear, time-independent damping, we recover the corresponding decay rates originally obtained in [3] via a different way. Moreover, examples are given to show how to apply our abstract results to concrete problems concerning damped wave equations, integro-differential damped equations, as well as damped plate equations.

Citation: Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations and Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009
References:
[1]

M. Daoulatli, Rates of decay for the wave systems with time-dependent damping, Discrete Contin. Dyn. Syst., 31 (2011), 407-443.  doi: 10.3934/dcds.2011.31.407.

[2]

H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland Mathematics Studies, 108. North-Holland Publishing Co., Amsterdam, 1985.

[3]

M. GhisiM. Gobbino and A. Haraux, Optimal decay estimates for the general solution to a class of semil-linear dissipative hyperbolic eqiations, J. Eur. Math. Soc. (JEMS), 18 (2016), 1961-1982.  doi: 10.4171/JEMS/635.

[4]

M. GhisiM. Gobbino and A. Haraux, Finding the exact decay rate of all solutions to some second order evolution equations with dissipation, J. Funct. Anal., 271 (2016), 2359-2395.  doi: 10.1016/j.jfa.2016.08.010.

[5]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1985.

[6]

A. Haraux, Slow and fast decay of solutions to some second order evolution equations, J. Anal. Math., 95 (2005), 297-321.  doi: 10.1007/BF02791505.

[7]

A. Haraux and M. A. Jendoubi, Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term, Evolution Equations and Control Theory, 2 (2013), 461-470.  doi: 10.3934/eect.2013.2.461.

[8]

A. Haraux and M. A. Jendoubi, The Convergence Problem for Dissipative Autonomous Systems, Classical Methods and Recent Advances, BCAM SpringerBriefs. Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2015. doi: 10.1007/978-3-319-23407-6.

[9]

A. HarauxP. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second-order evolution equations, SIAM J. Control Optim., 43 (2005), 2089-2108.  doi: 10.1137/S0363012903436569.

[10]

Z. Jiao and T.-J. Xiao, Convergence and speed estimates for semilinear wave systems with nonautonomous damping, Math. Methods Appl. Sci., 39 (2016), 5465-5474.  doi: 10.1002/mma.3931.

[11]

K.-P. JinJ. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.  doi: 10.1016/j.jde.2014.05.018.

[12]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., 4 (1999), 419-444.  doi: 10.1051/cocv:1999116.

[13]

P. Martinez, Precise decay rate estimates for time-dependent dissipative systems, Israel J. Math., 119 (2000), 291-324.  doi: 10.1007/BF02810672.

[14]

R. May, Long time behavior for a semilinear hyperbolic equation with asymptotically vanishing damping term and convex potential, J. Math. Anal. Appl., 430 (2015), 410-416.  doi: 10.1016/j.jmaa.2015.04.067.

[15]

M. Nakao, On the time decay of solutions of the wave equation with a local time-dependent nonlinear dissipation, Adv. Math. Sci. Appl., 7 (1997), 317-331. 

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[17]

T.-J. Xiao and J. Liang, Coupled second order semilinear evolution equations indirectly damped via memory effects, J. Differential Equations, 254 (2013), 2128-2157.  doi: 10.1016/j.jde.2012.11.019.

show all references

References:
[1]

M. Daoulatli, Rates of decay for the wave systems with time-dependent damping, Discrete Contin. Dyn. Syst., 31 (2011), 407-443.  doi: 10.3934/dcds.2011.31.407.

[2]

H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland Mathematics Studies, 108. North-Holland Publishing Co., Amsterdam, 1985.

[3]

M. GhisiM. Gobbino and A. Haraux, Optimal decay estimates for the general solution to a class of semil-linear dissipative hyperbolic eqiations, J. Eur. Math. Soc. (JEMS), 18 (2016), 1961-1982.  doi: 10.4171/JEMS/635.

[4]

M. GhisiM. Gobbino and A. Haraux, Finding the exact decay rate of all solutions to some second order evolution equations with dissipation, J. Funct. Anal., 271 (2016), 2359-2395.  doi: 10.1016/j.jfa.2016.08.010.

[5]

J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1985.

[6]

A. Haraux, Slow and fast decay of solutions to some second order evolution equations, J. Anal. Math., 95 (2005), 297-321.  doi: 10.1007/BF02791505.

[7]

A. Haraux and M. A. Jendoubi, Asymptotics for a second order differential equation with a linear, slowly time-decaying damping term, Evolution Equations and Control Theory, 2 (2013), 461-470.  doi: 10.3934/eect.2013.2.461.

[8]

A. Haraux and M. A. Jendoubi, The Convergence Problem for Dissipative Autonomous Systems, Classical Methods and Recent Advances, BCAM SpringerBriefs. Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2015. doi: 10.1007/978-3-319-23407-6.

[9]

A. HarauxP. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second-order evolution equations, SIAM J. Control Optim., 43 (2005), 2089-2108.  doi: 10.1137/S0363012903436569.

[10]

Z. Jiao and T.-J. Xiao, Convergence and speed estimates for semilinear wave systems with nonautonomous damping, Math. Methods Appl. Sci., 39 (2016), 5465-5474.  doi: 10.1002/mma.3931.

[11]

K.-P. JinJ. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.  doi: 10.1016/j.jde.2014.05.018.

[12]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM Control Optim. Calc. Var., 4 (1999), 419-444.  doi: 10.1051/cocv:1999116.

[13]

P. Martinez, Precise decay rate estimates for time-dependent dissipative systems, Israel J. Math., 119 (2000), 291-324.  doi: 10.1007/BF02810672.

[14]

R. May, Long time behavior for a semilinear hyperbolic equation with asymptotically vanishing damping term and convex potential, J. Math. Anal. Appl., 430 (2015), 410-416.  doi: 10.1016/j.jmaa.2015.04.067.

[15]

M. Nakao, On the time decay of solutions of the wave equation with a local time-dependent nonlinear dissipation, Adv. Math. Sci. Appl., 7 (1997), 317-331. 

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[17]

T.-J. Xiao and J. Liang, Coupled second order semilinear evolution equations indirectly damped via memory effects, J. Differential Equations, 254 (2013), 2128-2157.  doi: 10.1016/j.jde.2012.11.019.

[1]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[2]

Claudianor O. Alves, M. M. Cavalcanti, Valeria N. Domingos Cavalcanti, Mohammad A. Rammaha, Daniel Toundykov. On existence, uniform decay rates and blow up for solutions of systems of nonlinear wave equations with damping and source terms. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 583-608. doi: 10.3934/dcdss.2009.2.583

[3]

Akio Ito, Noriaki Yamazaki, Nobuyuki Kenmochi. Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces. Conference Publications, 1998, 1998 (Special) : 327-349. doi: 10.3934/proc.1998.1998.327

[4]

Marcello D'Abbicco, Ruy Coimbra Charão, Cleverson Roberto da Luz. Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2419-2447. doi: 10.3934/dcds.2016.36.2419

[5]

Tingting Liu, Qiaozhen Ma, Ling Xu. Attractor of the Kirchhoff type plate equation with memory and nonlinear damping on the whole time-dependent space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022046

[6]

Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331

[7]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[8]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[9]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[10]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[11]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[12]

Huafei Di, Yadong Shang, Jiali Yu. Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28 (1) : 221-261. doi: 10.3934/era.2020015

[13]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[14]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations and Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[15]

Chao Yang, Yanbing Yang. Long-time behavior for fourth-order wave equations with strain term and nonlinear weak damping term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4643-4658. doi: 10.3934/dcdss.2021110

[16]

Y. Efendiev, B. Popov. On homogenization of nonlinear hyperbolic equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 295-309. doi: 10.3934/cpaa.2005.4.295

[17]

Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4921-4941. doi: 10.3934/dcds.2021062

[18]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[19]

Dinh Nguyen Duy Hai. Identifying a space-dependent source term in distributed order time-fractional diffusion equations. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022025

[20]

Fabio Punzo. Support properties of solutions to nonlinear parabolic equations with variable density in the hyperbolic space. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 657-670. doi: 10.3934/dcdss.2012.5.657

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (463)
  • HTML views (444)
  • Cited by (1)

Other articles
by authors

[Back to Top]