June  2020, 9(2): 399-430. doi: 10.3934/eect.2020011

Null-controllability properties of a fractional wave equation with a memory term

1. 

DeustoTech, University of Deusto, 48007 Bilbao, Basque Country, Spain, Facultad de Ingeniería, Universidad de Deusto, Avenida de las Universidades 24, 48007 Bilbao, Basque Country, Spain

2. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, Faculty of Natural Sciences, 17 University AVE. STE 1701 San Juan PR 00925-2537 (USA)

* Corresponding author: Umberto Biccari

Received  January 2019 Revised  May 2019 Published  June 2020 Early access  August 2019

Fund Project: The work of the first author is supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement NO: 694126-DyCon), by the Grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain), and by the ELKARTEK project KK-2018/00083 ROAD2DC of the Basque Government. The work of both authors is supported by the Air Force Office of Scientific Research (AFOSR) under Award NO: FA9550-18-1-0242

We study the null-controllability properties of a one-dimensional wave equation with memory associated with the fractional Laplace operator. The goal is not only to drive the displacement and the velocity to rest at some time-instant but also to require the memory term to vanish at the same time, ensuring that the whole process reaches the equilibrium. The problem being equivalent to a coupled nonlocal PDE-ODE system, in which the ODE component has zero velocity of propagation, we are required to use a moving control strategy. Assuming that the control is acting on an open subset $ \omega(t) $ which is moving with a constant velocity $ c\in\mathbb{R} $, the main result of the paper states that the equation is null controllable in a sufficiently large time $ T $ and for initial data belonging to suitable fractional order Sobolev spaces. The proof will use a careful analysis of the spectrum of the operator associated with the system and an application of a classical moment method.

Citation: Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations and Control Theory, 2020, 9 (2) : 399-430. doi: 10.3934/eect.2020011
References:
[1]

U. Biccari, Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator, arXiv preprint, arXiv: 1411.7800.

[2]

U. Biccari and S. Micu, Null-controllability properties of the wave equation with a second order memory term, J. Differential Equations, 267 (2019), 1376-1422.  doi: 10.1016/j.jde.2019.02.009.

[3]

F. W. Chaves-Silva, L. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control, J. Math. Pures Appl. (9), 101 (2014), 198–222, https://doi.org/10.1016/j.matpur.2013.05.009. doi: 10.1016/j.matpur.2013.05.009.

[4]

F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory, SIAM J. Control Optim., 55 (2017), 2437–2459, https://doi.org/10.1137/151004239. doi: 10.1137/151004239.

[5]

B. Claus and M. Warma, Realization of the fractional laplacian with nonlocal exterior conditions via forms method, arXiv preprint, arXiv: 1904.13312.

[6]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573, https://doi.org/10.1016/j.bulsci.2011.12.004. doi: 10.1016/j.bulsci.2011.12.004.

[7]

A. A. Dubkov, B. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: an introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649–2672, https://doi.org/10.1142/S0218127408021877. doi: 10.1142/S0218127408021877.

[8]

C. G. Gal and M. Warma, Fractional in time semilinear parabolic equations and applications, HAL Id: hal-01578788, hhttps://hal.archives-ouvertes.fr/hal-01578788.

[9]

C. G. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations, 42 (2017), 579–625, https://doi.org/10.1080/03605302.2017.1295060. doi: 10.1080/03605302.2017.1295060.

[10]

R. Gorenflo, F. Mainardi and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), 87–103, https://doi.org/10.1016/j.chaos.2007.01.052. doi: 10.1016/j.chaos.2007.01.052.

[11]

J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (3), 79 (1962), 93–150, http://www.numdam.org/item?id=ASENS_1962_3_79_2_93_0. doi: 10.24033/asens.1108.

[12]

J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101–110, https://doi.org/10.1137/0331008. doi: 10.1137/0331008.

[13]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379–2402, https://doi.org/10.1016/j.jfa.2011.12.004. doi: 10.1016/j.jfa.2011.12.004.

[14]

G. Leugering, Exact controllability in viscoelasticity of fading memory type, Applicable Anal., 18 (1984), 221–243, https://doi.org/10.1080/00036818408839521. doi: 10.1080/00036818408839521.

[15]

G. Leugering, Exact boundary controllability of an integro-differential equation, Appl. Math. Optim., 15 (1987), 223–250, https://doi.org/10.1007/BF01442653. doi: 10.1007/BF01442653.

[16]

P. Loreti, L. Pandolfi and D. Sforza, Boundary controllability and observability of a viscoelastic string, SIAM J. Control Optim., 50 (2012), 820–844, https://doi.org/10.1137/110827740. doi: 10.1137/110827740.

[17]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711–1755, https://doi.org/10.1016/j.jde.2009.09.016. doi: 10.1016/j.jde.2009.09.016.

[18]

Q. Lü, X. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures Appl. (9), 108 (2017), 500–531, https://doi.org/10.1016/j.matpur.2017.05.001. doi: 10.1016/j.matpur.2017.05.001.

[19]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437, https://doi.org/10.1137/1010093. doi: 10.1137/1010093.

[20]

P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control, SIAM J. Control Optim., 51 (2013), 660–684, https://doi.org/10.1137/110856150. doi: 10.1137/110856150.

[21]

M. I. Mustafa, On the control of the wave equation by memory-type boundary condition, Discrete Contin. Dyn. Syst., 35 (2015), 1179–1192, https://doi.org/10.3934/dcds.2015.35.1179. doi: 10.3934/dcds.2015.35.1179.

[22]

L. Pandolfi, Boundary controllability and source reconstruction in a viscoelastic string under external traction, J. Math. Anal. Appl., 407 (2013), 464–479, https://doi.org/10.1016/j.jmaa.2013.05.051. doi: 10.1016/j.jmaa.2013.05.051.

[23]

J. Prüss, Evolutionary Integral Equations and Applications, [2012] reprint of the 1993 edition, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993, https://doi.org/10.1007/978-3-0348-8570-6. doi: 10.1007/978-3-0348-8570-6.

[24]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, vol. 35 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.

[25]

I. Romanov and A. Shamaev, Exact controllability of the distributed system, governed by string equation with memory, J. Dyn. Control Syst., 19 (2013), 611–623, https://doi.org/10.1007/s10883-013-9199-y. doi: 10.1007/s10883-013-9199-y.

[26]

L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differential Equations, 254 (2013), 141–178, https://doi.org/10.1016/j.jde.2012.08.014. doi: 10.1016/j.jde.2012.08.014.

[27]

W. R. Schneider, Grey noise, in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, (1990), 676–681.

[28]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.

[29]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831–855, https://doi.org/10.1017/S0308210512001783. doi: 10.1017/S0308210512001783.

[30]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009, https://doi.org/10.1007/978-3-7643-8994-9. doi: 10.1007/978-3-7643-8994-9.

[31]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), 33-44. 

[32]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499–547, https://doi.org/10.1007/s11118-014-9443-4. doi: 10.1007/s11118-014-9443-4.

[33]

M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57 (2019), 2037–2063, https://doi.org/10.1137/18M117145X. doi: 10.1137/18M117145X.

[34]

M. Warma and S. Zamorano, Analysis of the controllability from the exterior of strong damping nonlocal wave equations, ESAIM: Control, Optimisation and Calculus of Variations (COCV), (2019), https://doi.org/10.1051/cocv/2019028. doi: 10.1051/cocv/2019028.

[35]

R. M. Young, An Introduction to Nonharmonic Fourier Series, 1st edition, Academic Press, Inc., San Diego, CA, 2001.

[36]

P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput., 22 (2006), 87–99, https://doi.org/10.1007/BF02832039. doi: 10.1007/BF02832039.

show all references

References:
[1]

U. Biccari, Internal control for non-local Schrödinger and wave equations involving the fractional Laplace operator, arXiv preprint, arXiv: 1411.7800.

[2]

U. Biccari and S. Micu, Null-controllability properties of the wave equation with a second order memory term, J. Differential Equations, 267 (2019), 1376-1422.  doi: 10.1016/j.jde.2019.02.009.

[3]

F. W. Chaves-Silva, L. Rosier and E. Zuazua, Null controllability of a system of viscoelasticity with a moving control, J. Math. Pures Appl. (9), 101 (2014), 198–222, https://doi.org/10.1016/j.matpur.2013.05.009. doi: 10.1016/j.matpur.2013.05.009.

[4]

F. W. Chaves-Silva, X. Zhang and E. Zuazua, Controllability of evolution equations with memory, SIAM J. Control Optim., 55 (2017), 2437–2459, https://doi.org/10.1137/151004239. doi: 10.1137/151004239.

[5]

B. Claus and M. Warma, Realization of the fractional laplacian with nonlocal exterior conditions via forms method, arXiv preprint, arXiv: 1904.13312.

[6]

E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573, https://doi.org/10.1016/j.bulsci.2011.12.004. doi: 10.1016/j.bulsci.2011.12.004.

[7]

A. A. Dubkov, B. Spagnolo and V. V. Uchaikin, Lévy flight superdiffusion: an introduction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2649–2672, https://doi.org/10.1142/S0218127408021877. doi: 10.1142/S0218127408021877.

[8]

C. G. Gal and M. Warma, Fractional in time semilinear parabolic equations and applications, HAL Id: hal-01578788, hhttps://hal.archives-ouvertes.fr/hal-01578788.

[9]

C. G. Gal and M. Warma, Nonlocal transmission problems with fractional diffusion and boundary conditions on non-smooth interfaces, Comm. Partial Differential Equations, 42 (2017), 579–625, https://doi.org/10.1080/03605302.2017.1295060. doi: 10.1080/03605302.2017.1295060.

[10]

R. Gorenflo, F. Mainardi and A. Vivoli, Continuous-time random walk and parametric subordination in fractional diffusion, Chaos Solitons Fractals, 34 (2007), 87–103, https://doi.org/10.1016/j.chaos.2007.01.052. doi: 10.1016/j.chaos.2007.01.052.

[11]

J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (3), 79 (1962), 93–150, http://www.numdam.org/item?id=ASENS_1962_3_79_2_93_0. doi: 10.24033/asens.1108.

[12]

J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim., 31 (1993), 101–110, https://doi.org/10.1137/0331008. doi: 10.1137/0331008.

[13]

M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval, J. Funct. Anal., 262 (2012), 2379–2402, https://doi.org/10.1016/j.jfa.2011.12.004. doi: 10.1016/j.jfa.2011.12.004.

[14]

G. Leugering, Exact controllability in viscoelasticity of fading memory type, Applicable Anal., 18 (1984), 221–243, https://doi.org/10.1080/00036818408839521. doi: 10.1080/00036818408839521.

[15]

G. Leugering, Exact boundary controllability of an integro-differential equation, Appl. Math. Optim., 15 (1987), 223–250, https://doi.org/10.1007/BF01442653. doi: 10.1007/BF01442653.

[16]

P. Loreti, L. Pandolfi and D. Sforza, Boundary controllability and observability of a viscoelastic string, SIAM J. Control Optim., 50 (2012), 820–844, https://doi.org/10.1137/110827740. doi: 10.1137/110827740.

[17]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711–1755, https://doi.org/10.1016/j.jde.2009.09.016. doi: 10.1016/j.jde.2009.09.016.

[18]

Q. Lü, X. Zhang and E. Zuazua, Null controllability for wave equations with memory, J. Math. Pures Appl. (9), 108 (2017), 500–531, https://doi.org/10.1016/j.matpur.2017.05.001. doi: 10.1016/j.matpur.2017.05.001.

[19]

B. B. Mandelbrot and J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422–437, https://doi.org/10.1137/1010093. doi: 10.1137/1010093.

[20]

P. Martin, L. Rosier and P. Rouchon, Null controllability of the structurally damped wave equation with moving control, SIAM J. Control Optim., 51 (2013), 660–684, https://doi.org/10.1137/110856150. doi: 10.1137/110856150.

[21]

M. I. Mustafa, On the control of the wave equation by memory-type boundary condition, Discrete Contin. Dyn. Syst., 35 (2015), 1179–1192, https://doi.org/10.3934/dcds.2015.35.1179. doi: 10.3934/dcds.2015.35.1179.

[22]

L. Pandolfi, Boundary controllability and source reconstruction in a viscoelastic string under external traction, J. Math. Anal. Appl., 407 (2013), 464–479, https://doi.org/10.1016/j.jmaa.2013.05.051. doi: 10.1016/j.jmaa.2013.05.051.

[23]

J. Prüss, Evolutionary Integral Equations and Applications, [2012] reprint of the 1993 edition, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993, https://doi.org/10.1007/978-3-0348-8570-6. doi: 10.1007/978-3-0348-8570-6.

[24]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, vol. 35 of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1987.

[25]

I. Romanov and A. Shamaev, Exact controllability of the distributed system, governed by string equation with memory, J. Dyn. Control Syst., 19 (2013), 611–623, https://doi.org/10.1007/s10883-013-9199-y. doi: 10.1007/s10883-013-9199-y.

[26]

L. Rosier and B.-Y. Zhang, Unique continuation property and control for the Benjamin-Bona-Mahony equation on a periodic domain, J. Differential Equations, 254 (2013), 141–178, https://doi.org/10.1016/j.jde.2012.08.014. doi: 10.1016/j.jde.2012.08.014.

[27]

W. R. Schneider, Grey noise, in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), World Sci. Publ., Teaneck, NJ, (1990), 676–681.

[28]

R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.  doi: 10.3934/dcds.2013.33.2105.

[29]

R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831–855, https://doi.org/10.1017/S0308210512001783. doi: 10.1017/S0308210512001783.

[30]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009, https://doi.org/10.1007/978-3-7643-8994-9. doi: 10.1007/978-3-7643-8994-9.

[31]

E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), 33-44. 

[32]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499–547, https://doi.org/10.1007/s11118-014-9443-4. doi: 10.1007/s11118-014-9443-4.

[33]

M. Warma, Approximate controllabilty from the exterior of space-time fractional diffusive equations, SIAM J. Control Optim., 57 (2019), 2037–2063, https://doi.org/10.1137/18M117145X. doi: 10.1137/18M117145X.

[34]

M. Warma and S. Zamorano, Analysis of the controllability from the exterior of strong damping nonlocal wave equations, ESAIM: Control, Optimisation and Calculus of Variations (COCV), (2019), https://doi.org/10.1051/cocv/2019028. doi: 10.1051/cocv/2019028.

[35]

R. M. Young, An Introduction to Nonharmonic Fourier Series, 1st edition, Academic Press, Inc., San Diego, CA, 2001.

[36]

P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput., 22 (2006), 87–99, https://doi.org/10.1007/BF02832039. doi: 10.1007/BF02832039.

[1]

André da Rocha Lopes, Juan Límaco. Local null controllability for a parabolic equation with local and nonlocal nonlinearities in moving domains. Evolution Equations and Control Theory, 2022, 11 (3) : 749-779. doi: 10.3934/eect.2021024

[2]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations and Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[3]

Alhabib Moumni, Jawad Salhi. Exact controllability for a degenerate and singular wave equation with moving boundary. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022001

[4]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control and Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[5]

Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations and Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039

[6]

Arnab Roy, Takéo Takahashi. Local null controllability of a rigid body moving into a Boussinesq flow. Mathematical Control and Related Fields, 2019, 9 (4) : 793-836. doi: 10.3934/mcrf.2019050

[7]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[8]

Eugenio Sinestrari. Wave equation with memory. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 881-896. doi: 10.3934/dcds.1999.5.881

[9]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[10]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[11]

Dimplekumar Chalishajar, K. Ravikumar, K. Ramkumar, A. Anguraj. Null controllability of Hilfer fractional stochastic differential equations with nonlocal conditions. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022029

[12]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[13]

Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023

[14]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[15]

Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087

[16]

Salah-Eddine Chorfi, Ghita El Guermai, Lahcen Maniar, Walid Zouhair. Impulse null approximate controllability for heat equation with dynamic boundary conditions. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022026

[17]

Salah-Eddine Chorfi, Ghita El Guermai, Abdelaziz Khoutaibi, Lahcen Maniar. Boundary null controllability for the heat equation with dynamic boundary conditions. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022041

[18]

Valentin Keyantuo, Mahamadi Warma. On the interior approximate controllability for fractional wave equations. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3719-3739. doi: 10.3934/dcds.2016.36.3719

[19]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

[20]

Shirshendu Chowdhury, Debanjana Mitra, Michael Renardy. Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control. Evolution Equations and Control Theory, 2018, 7 (3) : 447-463. doi: 10.3934/eect.2018022

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (357)
  • HTML views (452)
  • Cited by (1)

Other articles
by authors

[Back to Top]