\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform stabilization of a wave equation with partial Dirichlet delayed control

  • * Corresponding author: Xiaorui Wang

    * Corresponding author: Xiaorui Wang 

This project is partially supported by the National Natural Science Foundation in China (NSFC 61773277), and partially supported by NSF of Qinghai Province (2017-ZJ-908)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider the uniform stabilization of some high-dimensional wave equations with partial Dirichlet delayed control. Herein we design a parameterization feedback controller to stabilize the system. This is a new approach of controller design which overcomes the difficulty in stability analysis of the closed-loop system. The detailed procedure is as follows: At first we rewrite the system with partial Dirichlet delayed control into an equivalence cascaded system of a transport equation and a wave equation, and then we construct an exponentially stable target system; Further, we give the form of the parameterization feedback controller. To stabilize the system under consideration, we choose some appropriate kernel functions and define a bounded inverse linear transformation such that the closed-loop system is equivalent to the target system. Finally, we obtain the stability of closed-loop system by the stability of target system.

    Mathematics Subject Classification: Primary: 93C20, 93D15; Secondary: 35G15, 35L05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] K. Ammari, Dirichlet boundary stabilization of the wave equation, Asymptot. Anal., 30 (2002), 117-130. 
    [2] C. BardosG. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.  doi: 10.1137/0330055.
    [3] D. Bresch-Pietri and M. Krstic, Adaptive compensation of diffusion-advection actuator dynamics using boundary measurements, Proc. of the 2015 Conference on Decision and Control, (2015). doi: 10.1109/CDC.2015.7402378.
    [4] G. Chen, Energy decay estimates and exact boundary valued controllability of the wave equation in a bounded domain, J. Math. Pure. Appl., 58 (1979), 249-273. 
    [5] G. Chen, A note on boundary stabilization of the wave equation, SIAM J. Control Optim., 19 (1981), 106-113.  doi: 10.1137/0319008.
    [6] R. DatkoJ. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156.  doi: 10.1137/0324007.
    [7] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713.  doi: 10.1137/0326040.
    [8] R. Datko, Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Automat. Control, 42 (1997), 511-515.  doi: 10.1109/9.566660.
    [9] B. Z. Guo and X. Zhang, The regularity of the wave equation with partial Dirichlet control and collocated observation, SIAM J. Control Optim., 44 (2005), 1598-1613.  doi: 10.1137/040610702.
    [10] B. Z. Guo and Z. X. Zhang, Dirichlet boundary stabilization of the wave equation, ESAIM Control Optim. & Calc. Var., 13 (2007), 776-792.  doi: 10.1051/cocv:2007040.
    [11] W. GuoH. C. Zhou and M. Krstic, Adaptive error feedback output regulation for 1D wave equation, Internat. J. Robust Nonlinear Control, 28 (2018), 4309-4329. 
    [12] Z. J. Han and G. Q. Xu, Output-based stabilization of Euler-Bernoulli beam with time-delay in boundary input, IMA J. Math. Control Inform., 31 (2014), 533-550.  doi: 10.1093/imamci/dnt030.
    [13] I. LasieckaJ. L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192. 
    [14] I. Lasiecka and R. Triggiani, Dirichlet boundary stabilization of the wave equation with damping feedback of finite range, J. Math. Anal. Appl., 97 (1983), 112-130.  doi: 10.1016/0022-247X(83)90241-X.
    [15] I. Lasiecka and R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with $L_2 (0, +\infty; L_2(\Gamma))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), 340-390.  doi: 10.1016/0022-0396(87)90025-8.
    [16] W. Littman, Boundary Control Theory for hyperbolic and parabolic partial differential equations with constant coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 5 (1978), 567-580. 
    [17] X. F. Liu and G. Q. Xu, Exponential stabilization for Timoshenko beam with distributed delay in the boundary control, Abstr. Appl. Anal., (2013), Art. ID 726794, 15 pp. doi: 10.1155/2013/726794.
    [18] X. F. Liu and G. Q. Xu, Exponential stabilization for Timoshenko beam with different delays in the boundary control, IMA J. Math. Control Inform., 34 (2017), 93-110.  doi: 10.1093/imamci/dnv036.
    [19] C. A. McMillan, Stabilization of the wave equation with finite range Dirichlet boundary feedback, J. Math. Anal. Appl., 171 (1992), 139-155.  doi: 10.1016/0022-247X(92)90382-N.
    [20] S. Nicaise and C. Pingotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561-1585.  doi: 10.1137/060648891.
    [21] S. Nicaise and J. Valein, Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2 (2007), 425-479.  doi: 10.3934/nhm.2007.2.425.
    [22] S. Nicaise and C. Pingotti, Exponential stability of second order evolution equations with structural damping and dynamic boundary delay feedback, IMA J. Math. Control Inform., 28 (2011), 417-446.  doi: 10.1093/imamci/dnr012.
    [23] S. Nicaise and C. Pignotti, Stabilization of second-order evolution equations with time delay, Math. Control Signals Systems, 26 (2014), 563-588.  doi: 10.1007/s00498-014-0130-1.
    [24] S. Nicaise and C. Pignotti, Exponential stability of abstract evolution equations with time delay, J. Evol. Equ., 15 (2015), 107-129.  doi: 10.1007/s00028-014-0251-5.
    [25] S. Nicaise and C. Pignotti, Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 791-813.  doi: 10.3934/dcdss.2016029.
    [26] Z.-H. Ning and Q.-X. Yan, Stabilization of the wave equation with variable coefficients and a delay in dissipative boundary feedback, J. Math. Anal. Appl., 367 (2010), 167-173.  doi: 10.1016/j.jmaa.2009.12.058.
    [27] C. Pignotti, A note on stabilization of locally damped wave equations with time delay, Systems Control Lett., 61 (2012), 92-97.  doi: 10.1016/j.sysconle.2011.09.016.
    [28] Y. F. Shang and G. Q. Xu, Stabilization of an Euler-Bernoulli beam with input delay in the boundary control, Systems Control Lett., 61 (2012), 1069-1078.  doi: 10.1016/j.sysconle.2012.07.012.
    [29] Y. F. Shang and G. Q. Xu, Dynamic feedback control and exponential stabilization of a compound system, J. Math. Anal. Appl., 422 (2015), 858-879.  doi: 10.1016/j.jmaa.2014.09.013.
    [30] A. SmyshlyaevE. Cerpa and M. Krstic, Boundary stabilization of a 1-D wave equation with in-domain antidamping, SIAM J. Control Optim., 48 (2010), 4014-4031.  doi: 10.1137/080742646.
    [31] R. Triggiani, Exact boundary controllability on $L^2(\Omega)\times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary $\partial\Omega$, and Related Problems, Appl. Math. Optim., 18 (1988), 241-277.  doi: 10.1007/BF01443625.
    [32] H. Wang and G. Q. Xu, Exponential stabilization of 1-d wave equation with input delay, WSEAS Transactions on Mathematics, 12 (2013), 1001-1013. 
    [33] G. Q. XuS. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var., 12 (2006), 770-785.  doi: 10.1051/cocv:2006021.
    [34] G. Q. Xu and H. X. Wang, Stabilization of Timoshenko beam system with delay in the boundary control, Internat. J. Control, 86 (2013), 1165-1178.  doi: 10.1080/00207179.2013.787494.
    [35] P. F. Yao, On the observability inequalities for the exact controllability of the wave equation with variable coefficients, SIAM J. Control Optim., 37 (1999), 1568-1599.  doi: 10.1137/S0363012997331482.
    [36] P. F. Yao, Global smooth solutions for the quasilinear wave equation with boundary dissipation, J. Differential Equations, 241 (2007), 62-93.  doi: 10.1016/j.jde.2007.06.014.
    [37] P. F. Yao, Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation, Chin. Ann. Math. Ser. B, 31 2010, 59–70. doi: 10.1007/s11401-008-0421-2.
    [38] P. F. Yao, Boundary controllability for the quasilinear wave equation, Appl. Math. Optim., 61 2010,191–233. doi: 10.1007/s00245-009-9088-7.
  • 加载中
SHARE

Article Metrics

HTML views(468) PDF downloads(444) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return