-
Previous Article
Time-varying integro-differential inclusions with Clarke sub-differential and non-local initial conditions: existence and approximate controllability
- EECT Home
- This Issue
-
Next Article
Design of boundary stabilizers for the non-autonomous cubic semilinear heat equation driven by a multiplicative noise
On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application
Laboratory of Applied Mathematics, University Mohamed Khider, P.O. Box 145, Biskra 07000. Algeria |
In this paper, we are concerned with an optimal control problem where the system is driven by fully coupled forward-backward stochastic differential equation of mean-field type with risk-sensitive performance functional. We study the risk-neutral model for which an optimal solution exists as a preliminary step. This is an extension of the initial stochastic control problem in this type of risk-sensitive performance problem, where an admissible set of controls are convex. We establish necessary as well as sufficient optimality conditions for the risk-sensitive performance functional control problem. Finally, we illustrate our main result of this paper by giving two examples of risk-sensitive control problem under linear stochastic dynamics with exponential quadratic cost function, the second example will be a mean-variance portfolio with a recursive utility functional optimization problem involving optimal control. The explicit expression of the optimal portfolio selection strategy is obtained in the state feedback.
References:
[1] |
D. Andersson and B. Djehiche,
A maximum principle for SDEs of mean-field type, Appl. Math. Optim., 63 (2011), 341-356.
doi: 10.1007/s00245-010-9123-8. |
[2] |
F. Armerin, Aspects of cash flow valuation, Ph.D thesis, Kungliga Tekniska Hogskolan (Sweden), 2004,116 pp. |
[3] |
R. Buckdahn, B. Djehiche and J. Li,
A general stochastic maximum principle for SDEs of mean-field type, Appl. Math. Optim., 64 (2011), 197-216.
doi: 10.1007/s00245-011-9136-y. |
[4] |
R. Buckdahn, J. Li and S. Peng,
Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Process. Appl., 119 (2009), 3133-3154.
doi: 10.1016/j.spa.2009.05.002. |
[5] |
R. Buckdahn, B. Djehiche, J. Li and S. Peng,
Mean-field backward stochastic differential equations: A limit approach, Ann. Probab., 37 (2009), 1524-1565.
doi: 10.1214/08-AOP442. |
[6] |
R. Carmona and F. Delarue, Mean-field forward-backward stochastic differential equations, Electron. Commun. Probab., 18 (2013), 15pp.
doi: 10.1214/ECP.v18-2446. |
[7] |
A. Chala,
Pontryagin's risk-sensitive stochastic maximum principle for backward stochastic differential equations with application, Bull. Braz. Math. Soc. (N. S.), 48 (2017), 399-411.
doi: 10.1007/s00574-017-0031-2. |
[8] |
A. Chala,
Sufficient optimality condition for a risk-sensitive control problem for backward stochastic differential equations and an application, J. Numer. Math. Stoch., 09 (2017), 48-60.
|
[9] |
A. Chala, D. Hafayed and R. Khallout, The use of Girsanov's theorem to describe the risk-sensitive problem and application to optimal control, in Stochastic Differential Equation-Basics and Applications, Nova Science Publishers, Inc., 2018,111–142. |
[10] |
B. Djehiche, H. Tembine and R. Tempone,
A stochastic maximum principle for risk-sensitive mean-field type control, IEEE Trans. Automat. Control, 60 (2015), 2640-2649.
doi: 10.1109/TAC.2015.2406973. |
[11] |
N. El-Karoui and S. Hamadène,
BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations, Stochastic Process. Appl., 107 (2003), 145-169.
doi: 10.1016/S0304-4149(03)00059-0. |
[12] |
D. Hafayed and A. Chala, An optimal control of a risk-sensitive problem for backward doubly stochastic differential equations with applications, Random Operators and Stochastic Equation, published online, (2020).
doi: 10.1515/rose-2020-2024. |
[13] |
Y. Hu, B. Øksendal and A. Sulem, Singular mean-field control games with applications to optimal harvesting and investment problems, preprint, arXiv: 1406.1863, (2014). |
[14] |
J. M. Lasry and P. L. Lions,
Mean-field games, Jpn. J. Math., 02 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8. |
[15] |
J. Li,
Stochastic maximum principle in the mean-field controls, Automatica J. IFAC, 48 (2012), 366-373.
doi: 10.1016/j.automatica.2011.11.006. |
[16] |
A. E. B. Lim and X. Y. Zhou,
A new risk-sensitive maximum principle, IEEE Trans. Automat. Control, 50 (2005), 958-966.
doi: 10.1109/TAC.2005.851441. |
[17] |
T. Meyer-Brandis, B. Øksendal and X. Y. Zhou,
A mean-field stochastic maximum principle via Malliavin calculus, Stochastics, 84 (2012), 643-666.
doi: 10.1080/17442508.2011.651619. |
[18] |
H. Min, Y. Peng and Y. Qin, Fully coupled mean-field forward-backward stochastic differential equations and stochastic maximum principle, Abstr. Appl. Anal., 2014 (2014), Art. ID 839467, 15 pp.
doi: 10.1155/2014/839467. |
[19] |
J. Shi and Z. Wu,
A risk-sensitive stochastic maximum principle for optimal control of jump diffusions and its applications, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 419-433.
doi: 10.1016/S0252-9602(11)60242-7. |
[20] |
J. Shi and Z. Wu,
Maximum principle for risk-sensitive stochastic optimal control problem and applications to finance, Stoch. Anal. Appl., 30 (2012), 997-1018.
doi: 10.1080/07362994.2012.727138. |
[21] |
A. S. Sznitman, Topics in propagation of chaos, in In Ecole d'Été de Probabilités de Saint-Flour XIX–1989, Springer, Berlin, 1991,165–251.
doi: 10.1007/BFb0085169. |
[22] |
H. Tembine,
Risk-sensitive mean-field-type games with Lp-norm drifts, Automatica J. IFAC, 59 (2015), 224-237.
doi: 10.1016/j.automatica.2015.06.036. |
[23] |
J. Yong,
A stochastic linear quadratic optimal control problem with generalized expectation, Stoch. Anal. Appl., 26 (2008), 1136-1160.
doi: 10.1080/07362990802286533. |
[24] |
J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3. |
[25] |
X. Y. Zhou and D. Li,
Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Appl. Math. Optim., 42 (2000), 19-33.
doi: 10.1007/s002450010003. |
show all references
References:
[1] |
D. Andersson and B. Djehiche,
A maximum principle for SDEs of mean-field type, Appl. Math. Optim., 63 (2011), 341-356.
doi: 10.1007/s00245-010-9123-8. |
[2] |
F. Armerin, Aspects of cash flow valuation, Ph.D thesis, Kungliga Tekniska Hogskolan (Sweden), 2004,116 pp. |
[3] |
R. Buckdahn, B. Djehiche and J. Li,
A general stochastic maximum principle for SDEs of mean-field type, Appl. Math. Optim., 64 (2011), 197-216.
doi: 10.1007/s00245-011-9136-y. |
[4] |
R. Buckdahn, J. Li and S. Peng,
Mean-field backward stochastic differential equations and related partial differential equations, Stochastic Process. Appl., 119 (2009), 3133-3154.
doi: 10.1016/j.spa.2009.05.002. |
[5] |
R. Buckdahn, B. Djehiche, J. Li and S. Peng,
Mean-field backward stochastic differential equations: A limit approach, Ann. Probab., 37 (2009), 1524-1565.
doi: 10.1214/08-AOP442. |
[6] |
R. Carmona and F. Delarue, Mean-field forward-backward stochastic differential equations, Electron. Commun. Probab., 18 (2013), 15pp.
doi: 10.1214/ECP.v18-2446. |
[7] |
A. Chala,
Pontryagin's risk-sensitive stochastic maximum principle for backward stochastic differential equations with application, Bull. Braz. Math. Soc. (N. S.), 48 (2017), 399-411.
doi: 10.1007/s00574-017-0031-2. |
[8] |
A. Chala,
Sufficient optimality condition for a risk-sensitive control problem for backward stochastic differential equations and an application, J. Numer. Math. Stoch., 09 (2017), 48-60.
|
[9] |
A. Chala, D. Hafayed and R. Khallout, The use of Girsanov's theorem to describe the risk-sensitive problem and application to optimal control, in Stochastic Differential Equation-Basics and Applications, Nova Science Publishers, Inc., 2018,111–142. |
[10] |
B. Djehiche, H. Tembine and R. Tempone,
A stochastic maximum principle for risk-sensitive mean-field type control, IEEE Trans. Automat. Control, 60 (2015), 2640-2649.
doi: 10.1109/TAC.2015.2406973. |
[11] |
N. El-Karoui and S. Hamadène,
BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations, Stochastic Process. Appl., 107 (2003), 145-169.
doi: 10.1016/S0304-4149(03)00059-0. |
[12] |
D. Hafayed and A. Chala, An optimal control of a risk-sensitive problem for backward doubly stochastic differential equations with applications, Random Operators and Stochastic Equation, published online, (2020).
doi: 10.1515/rose-2020-2024. |
[13] |
Y. Hu, B. Øksendal and A. Sulem, Singular mean-field control games with applications to optimal harvesting and investment problems, preprint, arXiv: 1406.1863, (2014). |
[14] |
J. M. Lasry and P. L. Lions,
Mean-field games, Jpn. J. Math., 02 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8. |
[15] |
J. Li,
Stochastic maximum principle in the mean-field controls, Automatica J. IFAC, 48 (2012), 366-373.
doi: 10.1016/j.automatica.2011.11.006. |
[16] |
A. E. B. Lim and X. Y. Zhou,
A new risk-sensitive maximum principle, IEEE Trans. Automat. Control, 50 (2005), 958-966.
doi: 10.1109/TAC.2005.851441. |
[17] |
T. Meyer-Brandis, B. Øksendal and X. Y. Zhou,
A mean-field stochastic maximum principle via Malliavin calculus, Stochastics, 84 (2012), 643-666.
doi: 10.1080/17442508.2011.651619. |
[18] |
H. Min, Y. Peng and Y. Qin, Fully coupled mean-field forward-backward stochastic differential equations and stochastic maximum principle, Abstr. Appl. Anal., 2014 (2014), Art. ID 839467, 15 pp.
doi: 10.1155/2014/839467. |
[19] |
J. Shi and Z. Wu,
A risk-sensitive stochastic maximum principle for optimal control of jump diffusions and its applications, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (2011), 419-433.
doi: 10.1016/S0252-9602(11)60242-7. |
[20] |
J. Shi and Z. Wu,
Maximum principle for risk-sensitive stochastic optimal control problem and applications to finance, Stoch. Anal. Appl., 30 (2012), 997-1018.
doi: 10.1080/07362994.2012.727138. |
[21] |
A. S. Sznitman, Topics in propagation of chaos, in In Ecole d'Été de Probabilités de Saint-Flour XIX–1989, Springer, Berlin, 1991,165–251.
doi: 10.1007/BFb0085169. |
[22] |
H. Tembine,
Risk-sensitive mean-field-type games with Lp-norm drifts, Automatica J. IFAC, 59 (2015), 224-237.
doi: 10.1016/j.automatica.2015.06.036. |
[23] |
J. Yong,
A stochastic linear quadratic optimal control problem with generalized expectation, Stoch. Anal. Appl., 26 (2008), 1136-1160.
doi: 10.1080/07362990802286533. |
[24] |
J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3. |
[25] |
X. Y. Zhou and D. Li,
Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Appl. Math. Optim., 42 (2000), 19-33.
doi: 10.1007/s002450010003. |
[1] |
Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control and Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018 |
[2] |
Tian Chen, Zhen Wu. A general maximum principle for partially observed mean-field stochastic system with random jumps in progressive structure. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022012 |
[3] |
Juan Li, Wenqiang Li. Controlled reflected mean-field backward stochastic differential equations coupled with value function and related PDEs. Mathematical Control and Related Fields, 2015, 5 (3) : 501-516. doi: 10.3934/mcrf.2015.5.501 |
[4] |
Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521 |
[5] |
Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043 |
[6] |
Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051 |
[7] |
Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97 |
[8] |
Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control and Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613 |
[9] |
Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Mean-field backward stochastic Volterra integral equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1929-1967. doi: 10.3934/dcdsb.2013.18.1929 |
[10] |
Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control and Related Fields, 2022, 12 (2) : 343-370. doi: 10.3934/mcrf.2021025 |
[11] |
Hao Chang, Jiaao Li, Hui Zhao. Robust optimal strategies of DC pension plans with stochastic volatility and stochastic income under mean-variance criteria. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1393-1423. doi: 10.3934/jimo.2021025 |
[12] |
Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115 |
[13] |
Haiyan Zhang. A necessary condition for mean-field type stochastic differential equations with correlated state and observation noises. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1287-1301. doi: 10.3934/jimo.2016.12.1287 |
[14] |
Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control and Related Fields, 2022, 12 (2) : 371-404. doi: 10.3934/mcrf.2021026 |
[15] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control and Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[16] |
Xun Li, Jingrui Sun, Jiongmin Yong. Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 2-. doi: 10.1186/s41546-016-0002-3 |
[17] |
Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028 |
[18] |
Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial and Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045 |
[19] |
Zhen Wu, Feng Zhang. Maximum principle for discrete-time stochastic optimal control problem and stochastic game. Mathematical Control and Related Fields, 2022, 12 (2) : 475-493. doi: 10.3934/mcrf.2021031 |
[20] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]