In this paper we study a new class of abstract evolution first order hemivariational inequalities which involves constraints and history-dependent operators. First, we prove the existence and uniqueness of solution by using a mixed equilibrium formulation with suitable selected bifunctions combined with a fixed-point principle for history-dependent operators. Next, we deduce existence, uniqueness and regularity results for some special subclasses of problems which include a constrained history-dependent variational–hemivariational inequality, an evolution quasi-variational inequality with constraints, and an evolution second order hemivariational inequality with constraints. Then, we provide an application of the results to a dynamic unilateral viscoelastic frictional contact problem and show its unique weak solvability.
Citation: |
[1] |
J. Ahn and D.E. Stewart, Dynamic frictionless contact in linear viscoelasticity, IMA J. Numer. Anal., 29 (2009), 43-71.
doi: 10.1093/imanum/drm029.![]() ![]() ![]() |
[2] |
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145.
![]() ![]() |
[3] |
S. Carl, V.K. Le and D. Motreanu, Nonsmooth Variational Problems and their Inequalities. Comparison Principles and Applications, Springer Monographs in Mathematics. Springer, New York, 2007.
doi: 10.1007/978-0-387-46252-3.![]() ![]() ![]() |
[4] |
S. Carl, V.K. Le and D. Motreanu, Evolutionary variational-hemivariational inequalities: Existence and comparison results, J. Math. Anal. Appl., 345 (2008), 545-558.
doi: 10.1016/j.jmaa.2008.04.005.![]() ![]() ![]() |
[5] |
O. Chadli, Q.H. Ansari and S. Al-Homidan, Existence of solutions for nonlinear implicit differential equations: An equilibrium problem approach, Numer. Func. Anal. Optim., 37 (2016), 1385-1419.
doi: 10.1080/01630563.2016.1210164.![]() ![]() ![]() |
[6] |
O. Chadli, Q.H. Ansari and J.-C. Yao, Mixed equilibrium problems and anti-periodic solutions for nonlinear evolution equations, J. Optim. Theory Appl., 168 (2016), 410-440.
doi: 10.1007/s10957-015-0707-y.![]() ![]() ![]() |
[7] |
F.H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.
![]() ![]() |
[8] |
M. Cocou, Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity, Z. angew. Math. Phys., 53 (2002), 1099-1109.
doi: 10.1007/PL00012615.![]() ![]() ![]() |
[9] |
Z. Denkowski, S. Migórski and N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
doi: 10.1007/978-1-4419-9158-4.![]() ![]() ![]() |
[10] |
Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic Publishers, Boston, MA, 2003.
![]() ![]() |
[11] |
C. Eck, J. Jarušek and M. Krbeč, Unilateral Contact Problems: Variational Methods and Existence Theorems, Pure and Applied Mathematics, 270. Chapman/CRC Press, New York, Boca Raton, FL, 2005.
doi: 10.1201/9781420027365.![]() ![]() ![]() |
[12] |
C. Eck, J. Jarušek and M. Sofonea, A dynamic elastic-visco-plastic unilateral contact problem with normal damped response and Coulomb friction, European J. Appl. Math., 21 (2010), 229-251.
doi: 10.1017/S0956792510000045.![]() ![]() ![]() |
[13] |
E.-H. Essoufi and M. Kabbaj, Existence of solutions of a dynamic Signorini's problem with nonlocal friction for viscoelastic piezoelectric materials, Bull. Math. Soc. Sc. Math. Roumanie (N.S.), 48 (2005), 181-195.
![]() ![]() |
[14] |
D. Goeleven, D. Motreanu, Y. Dumont and M. Rochdi, Variational and Hemivariational Inequalities: Theory, Methods and Applications, Volume I. Unilateral Analysis and Unilateral Mechanics, Nonconvex Optimization and its Applications, 69. Kluwer Academic Publishers, Boston, MA, 2003.
![]() ![]() |
[15] |
D. Goeleven and D. Motreanu, Variational and Hemivariational Inequalities, Theory, Methods and Applications. Vol. Ⅱ: Unilateral Problems, Nonconvex Optimization and its Applications, 70. Kluwer Academic Publishers, Boston, MA, 2003.
![]() ![]() |
[16] |
N. Hadjisavvas and H. Khatibzadeh, Maximal monotonicity of bifunctions, Optimization, 59 (2010), 147-160.
doi: 10.1080/02331930801951116.![]() ![]() ![]() |
[17] |
J.F. Han, S. Migórski and H.D. Zeng, Analysis of a dynamic viscoelastic unilateral contact problem with normal damped response, Nonlinear Anal. Real World Appl., 28 (2016), 229-250.
doi: 10.1016/j.nonrwa.2015.10.004.![]() ![]() ![]() |
[18] |
W.M. Han, S. Migórski and M. Sofonea, Analysis of a general dynamic history-dependent variational-hemivariational inequality, Nonlinear Anal. Real World Appl., 36 (2017), 69-88.
doi: 10.1016/j.nonrwa.2016.12.007.![]() ![]() ![]() |
[19] |
W.M. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, AMS/IP Studies in Advanced Mathematics, 30. American Mathematical Society, Providence, RI, International Press, omerville, MA, 2002.
![]() ![]() |
[20] |
J. Haslinger, M. Miettinen and P.D. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications, Nonconvex Optimization and its Applications, 35. Kluwer Academic Publishers, Dordrecht, 1999.
doi: 10.1007/978-1-4757-5233-5.![]() ![]() ![]() |
[21] |
S. Karamardian, Complementarity problems over cones with monotone and pseudomonotone maps, J. Optim. Theory Appl., 18 (1976), 445-454.
doi: 10.1007/BF00932654.![]() ![]() ![]() |
[22] |
A. Kulig and S. Migórski, Solvability and continuous dependence results for second order nonlinear inclusion with Volterra-type operator, Nonlinear Analysis, 75 (2012), 4729-4746.
doi: 10.1016/j.na.2012.03.023.![]() ![]() ![]() |
[23] |
K. Kuttler and M. Shillor, Dynamic contact with Signorini's condition and slip rate dependent friction, Electron. J. Differ. Equ., 2004 (2004), 21 pp.
![]() ![]() |
[24] |
S. Migórski, Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction, Appl. Anal., 84 (2005), 669-699.
doi: 10.1080/00036810500048129.![]() ![]() ![]() |
[25] |
S. Migórski and A. Ochal, A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity, 83 (2006), 247-275.
doi: 10.1007/s10659-005-9034-0.![]() ![]() ![]() |
[26] |
S. Migórski, A. Ochal and M. Sofonea, History-dependent subdifferential inclusions and hemivariational inequalities in contact mechanics, Nonlinear Anal. Real World Appl., 12 (2011), 3384-3396.
doi: 10.1016/j.nonrwa.2011.06.002.![]() ![]() ![]() |
[27] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5.![]() ![]() ![]() |
[28] |
S. Migórski, A. Ochal and M. Sofonea, History-dependent variational-hemivariational inequalities in contact mechanics, Nonlinear Anal. Real World Appl., 22 (2015), 604-618.
doi: 10.1016/j.nonrwa.2014.09.021.![]() ![]() ![]() |
[29] |
S. Migórski, A. Ochal and M. Sofonea, Evolutionary inclusions and hemivariational inequalities, Advances in Variational and Hemivariational Inequalities, Adv. Mech. Math., Springer, Cham, 33 (2015), 39-64.
doi: 10.1007/978-3-319-14490-0_2.![]() ![]() ![]() |
[30] |
S. Migórski and J. Ogorzaly, A class of evolution variational inequalities with memory and its application to viscoelastic frictional contact problems, J. Math. Anal. Appl., 442 (2016), 685-702.
doi: 10.1016/j.jmaa.2016.04.076.![]() ![]() ![]() |
[31] |
S. Migórski and J. Ogorzaly, Dynamic history-dependent variational-hemivariational inequalities with applications to contact mechanics, Z. angew. Math. Phys., 68 (2017), Art. 15, 22 pp.
doi: 10.1007/s00033-016-0758-4.![]() ![]() ![]() |
[32] |
S. Migórski, M. Sofonea and S.D. Zeng, Well-posedness of history-dependent sweeping processes, SIAM J. Math. Anal., 51 (2019), 1082-1107.
doi: 10.1137/18M1201561.![]() ![]() ![]() |
[33] |
D. Motreanu and P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Nonconvex Optimization and its Applications, 29. Kluwer Academic Publishers, Dordrecht, 1999.
doi: 10.1007/978-1-4615-4064-9.![]() ![]() ![]() |
[34] |
Z. Naniewicz and P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 188. Marcel Dekker, Inc., New York, 1995.
![]() ![]() |
[35] |
P.D. Panagiotopoulos, Nonconvex energy functions, hemivariational inequalities and substationary principles, Acta Mech., 42 (1983), 111-130.
doi: 10.1007/BF01170410.![]() ![]() ![]() |
[36] |
P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser, Boston, Inc., Boston, MA, 1985.
doi: 10.1007/978-1-4612-5152-1.![]() ![]() ![]() |
[37] |
P. D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-642-51677-1.![]() ![]() ![]() |
[38] |
M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact, Lect. Notes Phys., 655. Springer, Berlin, Heidelberg, 2004.
doi: 10.1007/b99799.![]() ![]() |
[39] |
M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Notes Series, 398. Cambridge University Press, Cambridge, 2012.
![]() |
[40] |
M. Sofonea and S. Migórski, Variational-Hemivariational Inequalities with Applications, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2018.
![]() ![]() |
[41] |
M. Sofonea, S. Migórski and A. Ochal, Two history-dependent contact problems, Advances in Variational and Hemivariational Inequalities, Adv. Mech. Math., Springer, Cham, 33 (2015), 355-380.
doi: 10.1007/978-3-319-14490-0_14.![]() ![]() ![]() |
[42] |
M. Sofonea, Y.-B. Xiao and S.D. Zeng, Generalized penalty method for history-dependent variational–hemivariational inequalities, submitted.
![]() |
[43] |
M. Sofonea and Y.-B. Xiao, Tykhonov well-posedness of split problems, submitted.
![]() |
[44] |
M. Sofonea and Y.-B. Xiao, Tykhonov well-posedness of a viscoplastic contact problem, Evolution Equations and Control Theory, to appear.
![]() |
[45] |
Y.-M. Wang, Y.-B. Xiao, X. Wang and Y.J. Cho, Equivalence of well-posedness between systems of hemivariational inequalities and inclusion problems, J. Nonlinear Sci. Appl., 9 (2016), 1178-1192.
doi: 10.22436/jnsa.009.03.44.![]() ![]() ![]() |
[46] |
Y.-B. Xiao and M. Sofonea, Fully history-dependent quasivariational inequalities in contact mechanics, Appl. Anal., 95 (2016), 2464-2484.
doi: 10.1080/00036811.2015.1093623.![]() ![]() ![]() |
[47] |
E. Zeidler, Nonlinear Functional Analysis and Applications, Ⅱ A/B, Springer, New York, 1990.
doi: 10.1007/978-1-4612-0985-0.![]() ![]() ![]() |