December  2020, 9(4): 1009-1026. doi: 10.3934/eect.2020049

On dynamic contact problem with generalized Coulomb friction, normal compliance and damage

1. 

Pedagogical University of Krakow, Department of Mathematics, ul. 2, 30-084 Kraków, Poland

2. 

Jagiellonian University, Faculty of Mathematics and Computer Science, ul. Łojasiewicza 6, 30-348 Kraków, Poland

* Corresponding author

Dedicated to Professor Meir Shillor on the occasion of his 70th birthday

Received  October 2019 Published  December 2020 Early access  March 2020

Fund Project: The research was supported by the H2020-MSCA-RISE-2018 Research and Innovation Staff Exchange Scheme Fellowship within the Project No. 823731 CONMECH. Work of PK was also supported by NCN (National Science Center) of the Republic of Poland by the projects no DEC-2017/25/B/ST1/00302 and UMO-2016/22/A/ST1/00077. The authors wish to thank Nikolaos S. Papageorgiou for useful comments

We formulate a dynamic problem which governs the displacement of a viscoelastic body which, on one hand, can come into frictional contact with a penetrable foundation, and, on the other hand, may undergo material damage. We formulate and prove the theorem on the existence and uniqueness of the weak solution to the formulated problem.

Citation: Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations and Control Theory, 2020, 9 (4) : 1009-1026. doi: 10.3934/eect.2020049
References:
[1]

K. T. Andrews and M. Shillor, Thermomechanical behaviour of a damageable beam in contact with two stops, Appl. Anal., 85 (2006), 845-865.  doi: 10.1080/00036810600792857.

[2]

K. T. AndrewsS. AndersonR. S. R. MenikeM. ShillorR. Swaminathan and J. Yuzwalk, Vibrations of a damageable string, Fluids and waves, Contemp. Math., Amer. Math. Soc., Providence, RI, 440 (2007), 1-13.  doi: 10.1090/conm/440/08474.

[3]

V. Barbu, Optimal Control of Variational Inequalities, Research Notes in Mathematics, 100. Pitman, Boston, MA, 1984.

[4]

E. Bonetti and G. Schimperna, Local existence for Frémond's model of damage in elastic materials, Continuum Mech. Therm., 16 (2004), 319-335.  doi: 10.1007/s00161-003-0152-2.

[5]

P. G. Ciarlet, On Korn's inequality, Chin. Ann. Math. Ser. B, 31 (2010), 607-618.  doi: 10.1007/s11401-010-0606-3.

[6]

J. C. ChipmanA. RouxM. Shillor and M. Sofonea, A damageable spring, Machine Dyn. Res., 35 (2011), 82-96. 

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.

[8]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, 2003. doi: 10.1007/978-1-4419-9158-4.

[9]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic Publishers, Boston, MA, 2003.

[10]

M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.

[11]

M. FrémondK. L. Kuttler and M. Shillor, Existence and uniqueness of solutions for a one-dimensional damage model, J. Math. Anal. Appl., 229 (1999), 271-294.  doi: 10.1006/jmaa.1998.6160.

[12]

L. Gasiński and P. Kalita, On quasi-static contact problem with generalized Coulomb friction, normal compliance and damage, Euro. J. Appl. Math., 27 (2016), 625-646.  doi: 10.1017/S0956792515000583.

[13]

L. Gasiński and A. Ochal, Dynamic thermoviscoelastic problem with friction and damage, Nonlinear Anal. Real World Appl., 21 (2015), 63-75.  doi: 10.1016/j.nonrwa.2014.06.004.

[14]

L. GasińskiA. Ochal and M. Shillor, Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage, Z. Anal. Anwend., 34 (2015), 251-275.  doi: 10.4171/ZAA/1538.

[15]

W. M. HanM. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage, J. Comput. Appl. Math., 137 (2001), 377-398.  doi: 10.1016/S0377-0427(00)00707-X.

[16]

P. Kalita, Convergence of Rothe scheme for hemivariational inequalities of parabolic type, Int. J. Numer. Anal. Mod., 10 (2013), 445-465. 

[17]

P. Kalita, Semidiscrete variable time-step $\theta$-scheme for nonmonotone evolution inclusion, arXiv: 1402.3721v1.

[18]

K. L. KuttlerJ. Purcell and M. Shillor, Analysis and simulations of a contact problem for a nonlinear dynamic beam with a crack, Q. J. Mech. Appl. Math., 65 (2012), 1-25.  doi: 10.1093/qjmam/hbr018.

[19]

K. L. Kuttler and M. Shillor, Quasistatic evolution of damage in an elastic body, Nonlinear Anal. Real World Appl., 7 (2006), 674-699.  doi: 10.1016/j.nonrwa.2005.03.026.

[20]

Y. X. Li and Z. H. Liu, A quasistatic contact problem for viscoelastic materials with friction and damage, Nonlinear Anal., 73 (2010), 2221-2229.  doi: 10.1016/j.na.2010.05.051.

[21]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26. Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.

[22]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 188. Marcel Dekker, Inc., New York, 1995.

[23]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Second edition, International Series of Numerical Mathematics, 153. Birkhäuser/Springer Basel AG, Basel, 2013. doi: 10.1007/978-3-0348-0513-1.

[24]

M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655. Springer, Berlin, 2004. doi: 10.1007/b99799.

[25]

M. SofoneaC. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems, Commun. Pure Appl. Ana., 7 (2008), 645-658.  doi: 10.3934/cpaa.2008.7.645.

[26]

M. Sofonea, W. M. Han and M. Shillor, Analysis and Approximations of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, 276. Chapman & Hall/CRC, Boca Raton, FL, 2006.

[27]

P. Szafraniec, Dynamic nonsmooth frictional contact problems with damage in thermoviscoelasticity, Math. Mech. Solids, 21 (2016), 525-538.  doi: 10.1177/1081286514527860.

show all references

References:
[1]

K. T. Andrews and M. Shillor, Thermomechanical behaviour of a damageable beam in contact with two stops, Appl. Anal., 85 (2006), 845-865.  doi: 10.1080/00036810600792857.

[2]

K. T. AndrewsS. AndersonR. S. R. MenikeM. ShillorR. Swaminathan and J. Yuzwalk, Vibrations of a damageable string, Fluids and waves, Contemp. Math., Amer. Math. Soc., Providence, RI, 440 (2007), 1-13.  doi: 10.1090/conm/440/08474.

[3]

V. Barbu, Optimal Control of Variational Inequalities, Research Notes in Mathematics, 100. Pitman, Boston, MA, 1984.

[4]

E. Bonetti and G. Schimperna, Local existence for Frémond's model of damage in elastic materials, Continuum Mech. Therm., 16 (2004), 319-335.  doi: 10.1007/s00161-003-0152-2.

[5]

P. G. Ciarlet, On Korn's inequality, Chin. Ann. Math. Ser. B, 31 (2010), 607-618.  doi: 10.1007/s11401-010-0606-3.

[6]

J. C. ChipmanA. RouxM. Shillor and M. Sofonea, A damageable spring, Machine Dyn. Res., 35 (2011), 82-96. 

[7]

F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.

[8]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, 2003. doi: 10.1007/978-1-4419-9158-4.

[9]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic Publishers, Boston, MA, 2003.

[10]

M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.

[11]

M. FrémondK. L. Kuttler and M. Shillor, Existence and uniqueness of solutions for a one-dimensional damage model, J. Math. Anal. Appl., 229 (1999), 271-294.  doi: 10.1006/jmaa.1998.6160.

[12]

L. Gasiński and P. Kalita, On quasi-static contact problem with generalized Coulomb friction, normal compliance and damage, Euro. J. Appl. Math., 27 (2016), 625-646.  doi: 10.1017/S0956792515000583.

[13]

L. Gasiński and A. Ochal, Dynamic thermoviscoelastic problem with friction and damage, Nonlinear Anal. Real World Appl., 21 (2015), 63-75.  doi: 10.1016/j.nonrwa.2014.06.004.

[14]

L. GasińskiA. Ochal and M. Shillor, Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage, Z. Anal. Anwend., 34 (2015), 251-275.  doi: 10.4171/ZAA/1538.

[15]

W. M. HanM. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage, J. Comput. Appl. Math., 137 (2001), 377-398.  doi: 10.1016/S0377-0427(00)00707-X.

[16]

P. Kalita, Convergence of Rothe scheme for hemivariational inequalities of parabolic type, Int. J. Numer. Anal. Mod., 10 (2013), 445-465. 

[17]

P. Kalita, Semidiscrete variable time-step $\theta$-scheme for nonmonotone evolution inclusion, arXiv: 1402.3721v1.

[18]

K. L. KuttlerJ. Purcell and M. Shillor, Analysis and simulations of a contact problem for a nonlinear dynamic beam with a crack, Q. J. Mech. Appl. Math., 65 (2012), 1-25.  doi: 10.1093/qjmam/hbr018.

[19]

K. L. Kuttler and M. Shillor, Quasistatic evolution of damage in an elastic body, Nonlinear Anal. Real World Appl., 7 (2006), 674-699.  doi: 10.1016/j.nonrwa.2005.03.026.

[20]

Y. X. Li and Z. H. Liu, A quasistatic contact problem for viscoelastic materials with friction and damage, Nonlinear Anal., 73 (2010), 2221-2229.  doi: 10.1016/j.na.2010.05.051.

[21]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26. Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.

[22]

Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 188. Marcel Dekker, Inc., New York, 1995.

[23]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Second edition, International Series of Numerical Mathematics, 153. Birkhäuser/Springer Basel AG, Basel, 2013. doi: 10.1007/978-3-0348-0513-1.

[24]

M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655. Springer, Berlin, 2004. doi: 10.1007/b99799.

[25]

M. SofoneaC. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems, Commun. Pure Appl. Ana., 7 (2008), 645-658.  doi: 10.3934/cpaa.2008.7.645.

[26]

M. Sofonea, W. M. Han and M. Shillor, Analysis and Approximations of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, 276. Chapman & Hall/CRC, Boca Raton, FL, 2006.

[27]

P. Szafraniec, Dynamic nonsmooth frictional contact problems with damage in thermoviscoelasticity, Math. Mech. Solids, 21 (2016), 525-538.  doi: 10.1177/1081286514527860.

[1]

Mahdi Boukrouche, Grzegorz Łukaszewicz. On global in time dynamics of a planar Bingham flow subject to a subdifferential boundary condition. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3969-3983. doi: 10.3934/dcds.2014.34.3969

[2]

Mircea Sofonea, Meir Shillor. A viscoplastic contact problem with a normal compliance with limited penetration condition and history-dependent stiffness coefficient. Communications on Pure and Applied Analysis, 2014, 13 (1) : 371-387. doi: 10.3934/cpaa.2014.13.371

[3]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulations of a frictional contact problem with damage and memory. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021037

[4]

Junfeng Yang. Dynamic power price problem: An inverse variational inequality approach. Journal of Industrial and Management Optimization, 2008, 4 (4) : 673-684. doi: 10.3934/jimo.2008.4.673

[5]

Krzysztof Bartosz. Numerical analysis of a nonmonotone dynamic contact problem of a non-clamped piezoelectric viscoelastic body. Evolution Equations and Control Theory, 2020, 9 (4) : 961-980. doi: 10.3934/eect.2020059

[6]

Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687

[7]

Masahiro Kubo. Quasi-subdifferential operators and evolution equations. Conference Publications, 2013, 2013 (special) : 447-456. doi: 10.3934/proc.2013.2013.447

[8]

Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339

[9]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[10]

Shengji Li, Xiaole Guo. Calculus rules of generalized $\epsilon-$subdifferential for vector valued mappings and applications. Journal of Industrial and Management Optimization, 2012, 8 (2) : 411-427. doi: 10.3934/jimo.2012.8.411

[11]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations and Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[12]

Mi-Ho Giga, Yoshikazu Giga. A subdifferential interpretation of crystalline motion under nonuniform driving force. Conference Publications, 1998, 1998 (Special) : 276-287. doi: 10.3934/proc.1998.1998.276

[13]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[14]

Sophie Guillaume. Evolution equations governed by the subdifferential of a convex composite function in finite dimensional spaces. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 23-52. doi: 10.3934/dcds.1996.2.23

[15]

S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial and Management Optimization, 2008, 4 (1) : 155-165. doi: 10.3934/jimo.2008.4.155

[16]

Marius Cocou. A dynamic viscoelastic problem with friction and rate-depending contact interactions. Evolution Equations and Control Theory, 2020, 9 (4) : 981-993. doi: 10.3934/eect.2020060

[17]

Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009

[18]

Soumia Saïdi, Fatima Fennour. Second-order problems involving time-dependent subdifferential operators and application to control. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022019

[19]

T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3 (3) : 675-689. doi: 10.3934/nhm.2008.3.675

[20]

Jianlin Jiang, Shun Zhang, Su Zhang, Jie Wen. A variational inequality approach for constrained multifacility Weber problem under gauge. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1085-1104. doi: 10.3934/jimo.2017091

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (271)
  • HTML views (442)
  • Cited by (0)

Other articles
by authors

[Back to Top]