We formulate a dynamic problem which governs the displacement of a viscoelastic body which, on one hand, can come into frictional contact with a penetrable foundation, and, on the other hand, may undergo material damage. We formulate and prove the theorem on the existence and uniqueness of the weak solution to the formulated problem.
Citation: |
[1] |
K. T. Andrews and M. Shillor, Thermomechanical behaviour of a damageable beam in contact with two stops, Appl. Anal., 85 (2006), 845-865.
doi: 10.1080/00036810600792857.![]() ![]() ![]() |
[2] |
K. T. Andrews, S. Anderson, R. S. R. Menike, M. Shillor, R. Swaminathan and J. Yuzwalk, Vibrations of a damageable string, Fluids and waves, Contemp. Math., Amer. Math. Soc., Providence, RI, 440 (2007), 1-13.
doi: 10.1090/conm/440/08474.![]() ![]() ![]() |
[3] |
V. Barbu, Optimal Control of Variational Inequalities, Research Notes in Mathematics, 100. Pitman, Boston, MA, 1984.
![]() ![]() |
[4] |
E. Bonetti and G. Schimperna, Local existence for Frémond's model of damage in elastic materials, Continuum Mech. Therm., 16 (2004), 319-335.
doi: 10.1007/s00161-003-0152-2.![]() ![]() ![]() |
[5] |
P. G. Ciarlet, On Korn's inequality, Chin. Ann. Math. Ser. B, 31 (2010), 607-618.
doi: 10.1007/s11401-010-0606-3.![]() ![]() ![]() |
[6] |
J. C. Chipman, A. Roux, M. Shillor and M. Sofonea, A damageable spring, Machine Dyn. Res., 35 (2011), 82-96.
![]() |
[7] |
F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.
![]() ![]() |
[8] |
Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, 2003.
doi: 10.1007/978-1-4419-9158-4.![]() ![]() ![]() |
[9] |
Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic Publishers, Boston, MA, 2003.
![]() ![]() |
[10] |
M. Frémond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04800-9.![]() ![]() ![]() |
[11] |
M. Frémond, K. L. Kuttler and M. Shillor, Existence and uniqueness of solutions for a one-dimensional damage model, J. Math. Anal. Appl., 229 (1999), 271-294.
doi: 10.1006/jmaa.1998.6160.![]() ![]() ![]() |
[12] |
L. Gasiński and P. Kalita, On quasi-static contact problem with generalized Coulomb friction, normal compliance and damage, Euro. J. Appl. Math., 27 (2016), 625-646.
doi: 10.1017/S0956792515000583.![]() ![]() ![]() |
[13] |
L. Gasiński and A. Ochal, Dynamic thermoviscoelastic problem with friction and damage, Nonlinear Anal. Real World Appl., 21 (2015), 63-75.
doi: 10.1016/j.nonrwa.2014.06.004.![]() ![]() ![]() |
[14] |
L. Gasiński, A. Ochal and M. Shillor, Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage, Z. Anal. Anwend., 34 (2015), 251-275.
doi: 10.4171/ZAA/1538.![]() ![]() ![]() |
[15] |
W. M. Han, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage, J. Comput. Appl. Math., 137 (2001), 377-398.
doi: 10.1016/S0377-0427(00)00707-X.![]() ![]() ![]() |
[16] |
P. Kalita, Convergence of Rothe scheme for hemivariational inequalities of parabolic type, Int. J. Numer. Anal. Mod., 10 (2013), 445-465.
![]() ![]() |
[17] |
P. Kalita, Semidiscrete variable time-step $\theta$-scheme for nonmonotone evolution inclusion, arXiv: 1402.3721v1.
![]() |
[18] |
K. L. Kuttler, J. Purcell and M. Shillor, Analysis and simulations of a contact problem for a nonlinear dynamic beam with a crack, Q. J. Mech. Appl. Math., 65 (2012), 1-25.
doi: 10.1093/qjmam/hbr018.![]() ![]() ![]() |
[19] |
K. L. Kuttler and M. Shillor, Quasistatic evolution of damage in an elastic body, Nonlinear Anal. Real World Appl., 7 (2006), 674-699.
doi: 10.1016/j.nonrwa.2005.03.026.![]() ![]() ![]() |
[20] |
Y. X. Li and Z. H. Liu, A quasistatic contact problem for viscoelastic materials with friction and damage, Nonlinear Anal., 73 (2010), 2221-2229.
doi: 10.1016/j.na.2010.05.051.![]() ![]() ![]() |
[21] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, 26. Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5.![]() ![]() ![]() |
[22] |
Z. Naniewicz and P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 188. Marcel Dekker, Inc., New York, 1995.
![]() ![]() |
[23] |
T. Roubíček, Nonlinear Partial Differential Equations with Applications, Second edition, International Series of Numerical Mathematics, 153. Birkhäuser/Springer Basel AG, Basel, 2013.
doi: 10.1007/978-3-0348-0513-1.![]() ![]() ![]() |
[24] |
M. Shillor, M. Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655. Springer, Berlin, 2004.
doi: 10.1007/b99799.![]() ![]() |
[25] |
M. Sofonea, C. Avramescu and A. Matei, A fixed point result with applications in the study of viscoplastic frictionless contact problems, Commun. Pure Appl. Ana., 7 (2008), 645-658.
doi: 10.3934/cpaa.2008.7.645.![]() ![]() ![]() |
[26] |
M. Sofonea, W. M. Han and M. Shillor, Analysis and Approximations of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics, 276. Chapman & Hall/CRC, Boca Raton, FL, 2006.
![]() ![]() |
[27] |
P. Szafraniec, Dynamic nonsmooth frictional contact problems with damage in thermoviscoelasticity, Math. Mech. Solids, 21 (2016), 525-538.
doi: 10.1177/1081286514527860.![]() ![]() ![]() |