
-
Previous Article
Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions
- EECT Home
- This Issue
-
Next Article
On a final value problem for a class of nonlinear hyperbolic equations with damping term
Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation
1. | INRIA, Villiers-lès-Nancy, F-54600, France |
2. | GIREF, Département de mathématiques et statistique, Université Laval, Québec, G1V 0A6, Canada |
We study the boundary observability of the 1-D homogeneous wave equation when using a Legendre-Galerkin semi-discretization method. It is already known that spurious high frequencies are responsible for its lack of uniformity with respect to the discretization parameter [
References:
[1] |
D. N. Arnold,
An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.
doi: 10.1137/0719052. |
[2] |
L. Bales and I. Lasiecka,
Negative norm estimates for fully discrete finite element approximations to the wave equation with nonhomogeneous ${L}_2$ Dirichlet boundary data, Math. Comp., 64 (1995), 89-115.
doi: 10.2307/2153324. |
[3] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[4] |
T. Z. Boulmezaoud and J. M. Urquiza,
On the eigenvalues of the spectral second order differentiation operator and application to the boundary observability of the wave equation, J. Sci. Comput., 31 (2007), 307-345.
doi: 10.1007/s10915-006-9106-8. |
[5] |
N. Burq and P. Gérard,
Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Math. Acad. Sci. Paris Sér. I Math., 325 (1997), 749-752.
doi: 10.1016/S0764-4442(97)80053-5. |
[6] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Scientific Computation, Springer-Verlag, Berlin, 2006. |
[7] |
C. Castro and S. Micu,
Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method, Numer. Math., 102 (2006), 413-462.
doi: 10.1007/s00211-005-0651-0. |
[8] |
C. Castro, S. Micu and A. Münch,
Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square, IMA J. Numer. Anal., 28 (2008), 186-214.
doi: 10.1093/imanum/drm012. |
[9] |
T. Chen and B. Francis, Optimal Sampled-data Control Systems, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1996. |
[10] |
S. Dolecki and D. L. Russell,
A general theory of observation and control, SIAM J. Control Optim., 15 (1977), 185-220.
doi: 10.1137/0315015. |
[11] |
S. Ervedoza and E. Zuazua, The wave equation: Control and numerics, in Control of Partial Differential Equations, Lecture Notes in Mathematics, 2048, Springer, Berlin, Heidelberg, 2012,245–340.
doi: 10.1007/978-3-642-27893-8_5. |
[12] |
S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves, SpringerBriefs in Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5808-1. |
[13] |
R. Glowinski,
Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation, J. Comput. Phys., 103 (1992), 189-221.
doi: 10.1016/0021-9991(92)90396-G. |
[14] |
R. Glowinski, W. Kinton and M. F. Wheeler,
A mixed finite element formulation for the boundary controllability of the wave equation, Internat. J. Numer. Methods Engrg., 27 (1989), 623-635.
doi: 10.1002/nme.1620270313. |
[15] |
R. Glowinski, C. H. Li and J.-L. Lions,
A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: Description of the numerical methods, Japan J. Appl. Math., 7 (1990), 1-76.
doi: 10.1007/BF03167891. |
[16] |
M. J. Grote, A. Schneebeli and D. Schötzau,
Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44 (2006), 2408-2431.
doi: 10.1137/05063194X. |
[17] |
P. Hansbo,
Nitsche's method for interface problems in computational mechanics, GAMM-Mitt., 28 (2005), 183-206.
doi: 10.1002/gamm.201490018. |
[18] |
J. S. Hesthaven and R. M. Kirby,
Filtering in Legendre spectral methods, Math. Comp., 77 (2008), 1425-1452.
doi: 10.1090/S0025-5718-08-02110-8. |
[19] |
J. A. Infante and E. Zuazua,
Boundary observability for the space semi-discretizations of the $1$-D wave equation, M2AN Math. Model. Numer. Anal., 33 (1999), 407-438.
doi: 10.1051/m2an:1999123. |
[20] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. |
[21] |
I. Lasiecka, J.-L. Lions and R. Triggiani,
Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.
|
[22] |
I. Lasiecka and R. Triggiani,
Regularity of hyperbolic equations under $L_{2}(0, \, T;L_{2}(\Gamma))$-Dirichlet boundary terms, Appl. Math. Optim., 10 (1983), 275-286.
doi: 10.1007/BF01448390. |
[23] |
I. Lasiecka and R. Triggiani,
Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: A nonconservative case, SIAM J. Control Optim., 27 (1989), 330-373.
doi: 10.1137/0327018. |
[24] |
I. Lasiecka and R. Triggiani,
Exact controllability of the wave equation with Neumann boundary control, Appl. Math. Optim., 19 (1989), 243-290.
doi: 10.1007/BF01448201. |
[25] |
I. Lasiecka and R. Triggiani, Differential and algebraic riccati equations with applications to boundary/point control problems: Continuous theory and approximation theory, in Lecture Notes in Control and Information Sciences, 164, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0006880. |
[26] |
J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, in Research in Applied Mathematics, 8, Masson, Paris, 1988. |
[27] |
A. Marica and E. Zuazua, Symmetric Discontinuous Galerkin Methods for 1-D Waves. Fourier Analysis, Propagation, Observability and Applications, SpringerBriefs in Mathematics, Springer, New York, 2014.
doi: 10.1007/978-1-4614-5811-1. |
[28] |
M. Negreanu and E. Zuazua,
Convergence of a multigrid method for the controllability of a 1-d wave equation, C. R. Math. Acad. Sci. Paris, 338 (2004), 413-418.
doi: 10.1016/j.crma.2003.11.032. |
[29] |
J. Nitsche,
Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15.
doi: 10.1007/BF02995904. |
[30] |
J. Shen,
Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.
doi: 10.1137/0915089. |
[31] |
R. Triggiani,
Exact boundary controllability on ${L}_2({\Omega})\times {H}^{-1}({\Omega})$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary $\partial\Omega$, and related problems, Appl. Math. Optim., 18 (1988), 241-277.
doi: 10.1007/BF01443625. |
[32] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[33] |
H. Vandeven,
On the eigenvalues of second-order spectral differentiation operators, Comput. Methods Appl. Mech. Engrg., 80 (1990), 313-318.
doi: 10.1016/0045-7825(90)90035-K. |
[34] |
T. Warburton and J. S. Hesthaven,
On the constants in $hp$-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Engrg., 192 (2003), 2765-2773.
doi: 10.1016/S0045-7825(03)00294-9. |
[35] |
E. Zuazua,
Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square, J. Math. Pures Appl., 78 (1999), 523-563.
doi: 10.1016/S0021-7824(98)00008-7. |
[36] |
E. Zuazua,
Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., 47 (2005), 197-243.
doi: 10.1137/S0036144503432862. |
show all references
References:
[1] |
D. N. Arnold,
An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.
doi: 10.1137/0719052. |
[2] |
L. Bales and I. Lasiecka,
Negative norm estimates for fully discrete finite element approximations to the wave equation with nonhomogeneous ${L}_2$ Dirichlet boundary data, Math. Comp., 64 (1995), 89-115.
doi: 10.2307/2153324. |
[3] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
doi: 10.1137/0330055. |
[4] |
T. Z. Boulmezaoud and J. M. Urquiza,
On the eigenvalues of the spectral second order differentiation operator and application to the boundary observability of the wave equation, J. Sci. Comput., 31 (2007), 307-345.
doi: 10.1007/s10915-006-9106-8. |
[5] |
N. Burq and P. Gérard,
Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Math. Acad. Sci. Paris Sér. I Math., 325 (1997), 749-752.
doi: 10.1016/S0764-4442(97)80053-5. |
[6] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods, Scientific Computation, Springer-Verlag, Berlin, 2006. |
[7] |
C. Castro and S. Micu,
Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method, Numer. Math., 102 (2006), 413-462.
doi: 10.1007/s00211-005-0651-0. |
[8] |
C. Castro, S. Micu and A. Münch,
Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square, IMA J. Numer. Anal., 28 (2008), 186-214.
doi: 10.1093/imanum/drm012. |
[9] |
T. Chen and B. Francis, Optimal Sampled-data Control Systems, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1996. |
[10] |
S. Dolecki and D. L. Russell,
A general theory of observation and control, SIAM J. Control Optim., 15 (1977), 185-220.
doi: 10.1137/0315015. |
[11] |
S. Ervedoza and E. Zuazua, The wave equation: Control and numerics, in Control of Partial Differential Equations, Lecture Notes in Mathematics, 2048, Springer, Berlin, Heidelberg, 2012,245–340.
doi: 10.1007/978-3-642-27893-8_5. |
[12] |
S. Ervedoza and E. Zuazua, Numerical Approximation of Exact Controls for Waves, SpringerBriefs in Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-5808-1. |
[13] |
R. Glowinski,
Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation, J. Comput. Phys., 103 (1992), 189-221.
doi: 10.1016/0021-9991(92)90396-G. |
[14] |
R. Glowinski, W. Kinton and M. F. Wheeler,
A mixed finite element formulation for the boundary controllability of the wave equation, Internat. J. Numer. Methods Engrg., 27 (1989), 623-635.
doi: 10.1002/nme.1620270313. |
[15] |
R. Glowinski, C. H. Li and J.-L. Lions,
A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: Description of the numerical methods, Japan J. Appl. Math., 7 (1990), 1-76.
doi: 10.1007/BF03167891. |
[16] |
M. J. Grote, A. Schneebeli and D. Schötzau,
Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44 (2006), 2408-2431.
doi: 10.1137/05063194X. |
[17] |
P. Hansbo,
Nitsche's method for interface problems in computational mechanics, GAMM-Mitt., 28 (2005), 183-206.
doi: 10.1002/gamm.201490018. |
[18] |
J. S. Hesthaven and R. M. Kirby,
Filtering in Legendre spectral methods, Math. Comp., 77 (2008), 1425-1452.
doi: 10.1090/S0025-5718-08-02110-8. |
[19] |
J. A. Infante and E. Zuazua,
Boundary observability for the space semi-discretizations of the $1$-D wave equation, M2AN Math. Model. Numer. Anal., 33 (1999), 407-438.
doi: 10.1051/m2an:1999123. |
[20] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. |
[21] |
I. Lasiecka, J.-L. Lions and R. Triggiani,
Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.
|
[22] |
I. Lasiecka and R. Triggiani,
Regularity of hyperbolic equations under $L_{2}(0, \, T;L_{2}(\Gamma))$-Dirichlet boundary terms, Appl. Math. Optim., 10 (1983), 275-286.
doi: 10.1007/BF01448390. |
[23] |
I. Lasiecka and R. Triggiani,
Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: A nonconservative case, SIAM J. Control Optim., 27 (1989), 330-373.
doi: 10.1137/0327018. |
[24] |
I. Lasiecka and R. Triggiani,
Exact controllability of the wave equation with Neumann boundary control, Appl. Math. Optim., 19 (1989), 243-290.
doi: 10.1007/BF01448201. |
[25] |
I. Lasiecka and R. Triggiani, Differential and algebraic riccati equations with applications to boundary/point control problems: Continuous theory and approximation theory, in Lecture Notes in Control and Information Sciences, 164, Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0006880. |
[26] |
J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Tome 1, in Research in Applied Mathematics, 8, Masson, Paris, 1988. |
[27] |
A. Marica and E. Zuazua, Symmetric Discontinuous Galerkin Methods for 1-D Waves. Fourier Analysis, Propagation, Observability and Applications, SpringerBriefs in Mathematics, Springer, New York, 2014.
doi: 10.1007/978-1-4614-5811-1. |
[28] |
M. Negreanu and E. Zuazua,
Convergence of a multigrid method for the controllability of a 1-d wave equation, C. R. Math. Acad. Sci. Paris, 338 (2004), 413-418.
doi: 10.1016/j.crma.2003.11.032. |
[29] |
J. Nitsche,
Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg, 36 (1971), 9-15.
doi: 10.1007/BF02995904. |
[30] |
J. Shen,
Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials, SIAM J. Sci. Comput., 15 (1994), 1489-1505.
doi: 10.1137/0915089. |
[31] |
R. Triggiani,
Exact boundary controllability on ${L}_2({\Omega})\times {H}^{-1}({\Omega})$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary $\partial\Omega$, and related problems, Appl. Math. Optim., 18 (1988), 241-277.
doi: 10.1007/BF01443625. |
[32] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[33] |
H. Vandeven,
On the eigenvalues of second-order spectral differentiation operators, Comput. Methods Appl. Mech. Engrg., 80 (1990), 313-318.
doi: 10.1016/0045-7825(90)90035-K. |
[34] |
T. Warburton and J. S. Hesthaven,
On the constants in $hp$-finite element trace inverse inequalities, Comput. Methods Appl. Mech. Engrg., 192 (2003), 2765-2773.
doi: 10.1016/S0045-7825(03)00294-9. |
[35] |
E. Zuazua,
Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square, J. Math. Pures Appl., 78 (1999), 523-563.
doi: 10.1016/S0021-7824(98)00008-7. |
[36] |
E. Zuazua,
Propagation, observation, and control of waves approximated by finite difference methods, SIAM Rev., 47 (2005), 197-243.
doi: 10.1137/S0036144503432862. |












[1] |
Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025 |
[2] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
[3] |
Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201 |
[4] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[5] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[6] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[7] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[8] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[9] |
Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389 |
[10] |
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196 |
[11] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[12] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[13] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[14] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
[15] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[16] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[17] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[18] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[19] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[20] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]