• Previous Article
    Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set
  • EECT Home
  • This Issue
  • Next Article
    Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation
March  2021, 10(1): 155-198. doi: 10.3934/eect.2020061

Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions

1. 

Department of Mathematics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

2. 

Department of Mathematics, University of Bielefeld, Postfach 100131, 33501 Bielefeld, Germany

* Corresponding author: Roland Schnaubelt

Received  December 2018 Revised  March 2020 Published  June 2020

Fund Project: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 258734477 – SFB 1173

In this article we provide a local wellposedness theory for quasilinear Maxwell equations with absorbing boundary conditions in $ {\mathcal{H}}^m $ for $ m \geq 3 $. The Maxwell equations are equipped with instantaneous nonlinear material laws leading to a quasilinear symmetric hyperbolic first order system. We consider both linear and nonlinear absorbing boundary conditions. We show existence and uniqueness of a local solution, provide a blow-up criterion in the Lipschitz norm, and prove the continuous dependence on the data. In the case of nonlinear boundary conditions we need a smallness assumption on the tangential trace of the solution. The proof is based on detailed apriori estimates and the regularity theory for the corresponding linear problem which we also develop here.

Citation: Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061
References:
[1]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations, The Clarendon Press, Oxford University Press, Oxford, 2007.  Google Scholar

[2]

K. BuschG. von FreymannS. LindenS. MingaleevL. Tkeshelashvili and M. Wegener, Periodic nanostructures for photonics, Phys. Reports, 444 (2007), 101-202.  doi: 10.1016/j.physrep.2007.02.011.  Google Scholar

[3]

J. Cagnol and M. Eller, Boundary regularity for Maxwell's equations with applications to shape optimization, J. Differential Equations, 250 (2011), 1114-1136.  doi: 10.1016/j.jde.2010.08.004.  Google Scholar

[4]

J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations., North-Holland Publishing Co., Amsterdam-New York, 1982.  Google Scholar

[5]

P. D'Ancona, S. Nicaise and R. Schnaubelt, Blow-up for nonlinear Maxwell equations, Electron. J. Differential Equations, (2018), paper No. 73, 9 pp.  Google Scholar

[6]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, Spectral Theory and Applications, Springer-Verlag, Berlin, 2000.  Google Scholar

[7]

M. Eller, On symmetric hyperbolic boundary problems with nonhomogeneous conservative boundary conditions., SIAM J. Math. Anal., 44 (2012), 1925-1949.  doi: 10.1137/110834652.  Google Scholar

[8]

M. EllerJ. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comput. Appl. Math., 21 (2002), 135-165.   Google Scholar

[9] M. Fabrizio and A. Morro, Electromagnetism of Continuous Media, Oxford University Press, Oxford, 2003.  doi: 10.1093/acprof:oso/9780198527008.001.0001.  Google Scholar
[10]

O. Gués, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations, 15 (1990), 595-645.  doi: 10.1080/03605309908820701.  Google Scholar

[11]

L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976.  Google Scholar

[12]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205.  doi: 10.1007/BF00280740.  Google Scholar

[13]

I. Lasiecka, M. Pokojovy and R. Schnaubelt, Exponential decay of quasilinear Maxwell equations with interior conductivity, NoDEA Nonlinear Differential Equations Appl., 26 (2019), no. 6, Paper No. 51, 34 pp. doi: 10.1007/s00030-019-0595-1.  Google Scholar

[14]

A. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), 607-675.  doi: 10.1002/cpa.3160280504.  Google Scholar

[15]

R. H. Picard and W. M. Zajaczkowski, Local existence of solutions of impedance initial-boundary value problem for non-linear Maxwell equations, Math. Methods Appl. Sci., 18 (1995), 169-199.  doi: 10.1002/mma.1670180302.  Google Scholar

[16]

M. Pokojovy and R. Schnaubelt, Boundary stabilization of quasilinear Maxwell equations, J. Differential Equations, 268 (2020), 784-812.  doi: 10.1016/j.jde.2019.08.032.  Google Scholar

[17]

J. Rauch, $\mathcal{L}_2$ is a continuable initial condition for Kreiss' mixed problems, Comm. Pure Appl. Math., 25 (1972), 265-285.  doi: 10.1002/cpa.3160250305.  Google Scholar

[18]

J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., 291 (1985), 167-187.  doi: 10.1090/S0002-9947-1985-0797053-4.  Google Scholar

[19]

R. Schnaubelt and M. Spitz, Local wellposedness of quasilinear Maxwell equations with conservative interface conditions, preprint, 2018, arXiv: 1811.08714. Google Scholar

[20]

P. Secchi, Well-posedness of characteristic symmetric hyperbolic systems, Arch. Rational Mech. Anal., 134 (1996), 155-197.  doi: 10.1007/BF00379552.  Google Scholar

[21]

M. Spitz, Local wellposedness of nonlinear Maxwell equations, Ph.D. thesis, Karlsruhe Institute of Technology, 2017. https://publikationen.bibliothek.kit.edu/1000078030. Google Scholar

[22]

M. Spitz, Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions, preprint, arXiv: 1805.00671. Google Scholar

[23]

M. Spitz, Local wellposedness of nonlinear Maxwell equations with perfectly conducting boundary conditions, J. Differential Equations, 266 (2019), 5012-5063.  doi: 10.1016/j.jde.2018.10.019.  Google Scholar

show all references

References:
[1]

S. Benzoni-Gavage and D. Serre, Multidimensional Hyperbolic Partial Differential Equations, The Clarendon Press, Oxford University Press, Oxford, 2007.  Google Scholar

[2]

K. BuschG. von FreymannS. LindenS. MingaleevL. Tkeshelashvili and M. Wegener, Periodic nanostructures for photonics, Phys. Reports, 444 (2007), 101-202.  doi: 10.1016/j.physrep.2007.02.011.  Google Scholar

[3]

J. Cagnol and M. Eller, Boundary regularity for Maxwell's equations with applications to shape optimization, J. Differential Equations, 250 (2011), 1114-1136.  doi: 10.1016/j.jde.2010.08.004.  Google Scholar

[4]

J. Chazarain and A. Piriou, Introduction to the Theory of Linear Partial Differential Equations., North-Holland Publishing Co., Amsterdam-New York, 1982.  Google Scholar

[5]

P. D'Ancona, S. Nicaise and R. Schnaubelt, Blow-up for nonlinear Maxwell equations, Electron. J. Differential Equations, (2018), paper No. 73, 9 pp.  Google Scholar

[6]

R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 3, Spectral Theory and Applications, Springer-Verlag, Berlin, 2000.  Google Scholar

[7]

M. Eller, On symmetric hyperbolic boundary problems with nonhomogeneous conservative boundary conditions., SIAM J. Math. Anal., 44 (2012), 1925-1949.  doi: 10.1137/110834652.  Google Scholar

[8]

M. EllerJ. E. Lagnese and S. Nicaise, Decay rates for solutions of a Maxwell system with nonlinear boundary damping, Comput. Appl. Math., 21 (2002), 135-165.   Google Scholar

[9] M. Fabrizio and A. Morro, Electromagnetism of Continuous Media, Oxford University Press, Oxford, 2003.  doi: 10.1093/acprof:oso/9780198527008.001.0001.  Google Scholar
[10]

O. Gués, Problème mixte hyperbolique quasi-linéaire caractéristique, Comm. Partial Differential Equations, 15 (1990), 595-645.  doi: 10.1080/03605309908820701.  Google Scholar

[11]

L. Hörmander, Linear Partial Differential Operators, Springer Verlag, Berlin-New York, 1976.  Google Scholar

[12]

T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181-205.  doi: 10.1007/BF00280740.  Google Scholar

[13]

I. Lasiecka, M. Pokojovy and R. Schnaubelt, Exponential decay of quasilinear Maxwell equations with interior conductivity, NoDEA Nonlinear Differential Equations Appl., 26 (2019), no. 6, Paper No. 51, 34 pp. doi: 10.1007/s00030-019-0595-1.  Google Scholar

[14]

A. Majda and S. Osher, Initial-boundary value problems for hyperbolic equations with uniformly characteristic boundary, Comm. Pure Appl. Math., 28 (1975), 607-675.  doi: 10.1002/cpa.3160280504.  Google Scholar

[15]

R. H. Picard and W. M. Zajaczkowski, Local existence of solutions of impedance initial-boundary value problem for non-linear Maxwell equations, Math. Methods Appl. Sci., 18 (1995), 169-199.  doi: 10.1002/mma.1670180302.  Google Scholar

[16]

M. Pokojovy and R. Schnaubelt, Boundary stabilization of quasilinear Maxwell equations, J. Differential Equations, 268 (2020), 784-812.  doi: 10.1016/j.jde.2019.08.032.  Google Scholar

[17]

J. Rauch, $\mathcal{L}_2$ is a continuable initial condition for Kreiss' mixed problems, Comm. Pure Appl. Math., 25 (1972), 265-285.  doi: 10.1002/cpa.3160250305.  Google Scholar

[18]

J. Rauch, Symmetric positive systems with boundary characteristic of constant multiplicity, Trans. Amer. Math. Soc., 291 (1985), 167-187.  doi: 10.1090/S0002-9947-1985-0797053-4.  Google Scholar

[19]

R. Schnaubelt and M. Spitz, Local wellposedness of quasilinear Maxwell equations with conservative interface conditions, preprint, 2018, arXiv: 1811.08714. Google Scholar

[20]

P. Secchi, Well-posedness of characteristic symmetric hyperbolic systems, Arch. Rational Mech. Anal., 134 (1996), 155-197.  doi: 10.1007/BF00379552.  Google Scholar

[21]

M. Spitz, Local wellposedness of nonlinear Maxwell equations, Ph.D. thesis, Karlsruhe Institute of Technology, 2017. https://publikationen.bibliothek.kit.edu/1000078030. Google Scholar

[22]

M. Spitz, Regularity theory for nonautonomous Maxwell equations with perfectly conducting boundary conditions, preprint, arXiv: 1805.00671. Google Scholar

[23]

M. Spitz, Local wellposedness of nonlinear Maxwell equations with perfectly conducting boundary conditions, J. Differential Equations, 266 (2019), 5012-5063.  doi: 10.1016/j.jde.2018.10.019.  Google Scholar

[1]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[4]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[5]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[6]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[7]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[8]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[9]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[10]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[11]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[12]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[13]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[14]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[15]

Jonathan DeWitt. Local Lyapunov spectrum rigidity of nilmanifold automorphisms. Journal of Modern Dynamics, 2021, 17: 65-109. doi: 10.3934/jmd.2021003

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[17]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[18]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[19]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[20]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (88)
  • HTML views (283)
  • Cited by (0)

Other articles
by authors

[Back to Top]