-
Previous Article
Internal feedback stabilization for parabolic systems coupled in zero or first order terms
- EECT Home
- This Issue
-
Next Article
Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting
Stabilization of the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n $
1. | Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China |
2. | School of Sciences, Beijing Forestry University, Beijing, 100083, China |
In this article, we consider the transmission wave/plate equation with variable coefficients on $ {\mathbb{R}}^n(n\ge 3) $. By virtue of the Morawetz multipliers in non Euclidean geometries and compactness-uniqueness arguments, we obtain some stability result of the transmission wave/plate system under suitable geometric conditions.
References:
[1] |
K. Ammari and S. Nicaise,
Stabilization of a transmission wave/plate equation, J. Differential Equations, 249 (2010), 707-727.
doi: 10.1016/j.jde.2010.03.007. |
[2] |
V. Barbu, Analysis and control of nonlinear infinite dimensional systems, Academic Press, Inc., Boston, MA, 1993.
![]() ![]() |
[3] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
|
[4] |
C. A. Bortot, M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Piccione,
Exponential asymptotic stability for the Klein-Gordon equation on non-compact Riemannian manifolds, Appl. Math. Optim., 78 (2018), 219-265.
doi: 10.1007/s00245-017-9405-5. |
[5] |
N. Burq and R. Joly,
Exponential decay for the damped wave equation in unbounded domains, Commun. Contemp. Math., 18 (2016), 1650012.
doi: 10.1142/S0219199716500127. |
[6] |
J. M. Bouclet and J. Royer,
Local energy decay for the damped wave equation, J. Funct. Anal., 266 (2014), 4538-4615.
doi: 10.1016/j.jfa.2014.01.028. |
[7] |
V. Barbu, I. Lasiecka and A. M. Rammaha,
Blow-up of generalized solutions to wave equations with nonlinear degenerate damping and source terms, Indiana Univ. Math. J., 56 (2007), 995-1021.
doi: 10.1512/iumj.2007.56.2990. |
[8] |
B. Dehman, G. Lebeau and E. Zuazua,
Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. École Norm. Sup., 36 (2003), 525-551.
doi: 10.1016/S0012-9593(03)00021-1. |
[9] |
S. J. Feng and D. X. Feng,
Nonlinear internal damping of wave equations with variable coefficients, Acta Math. Sin. (Engl. Ser.), 20 (2004), 1057-1072.
doi: 10.1007/s10114-004-0394-3. |
[10] |
B. Gong, F. Y. Yang and X. Zhao,
Stabilization of the transmission wave/plate equation with variable coefficients, J. Math. Anal. Appl., 455 (2017), 947-962.
doi: 10.1016/j.jmaa.2017.06.014. |
[11] |
A. Haraux,
Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations, 59 (1985), 145-154.
doi: 10.1016/0022-0396(85)90151-2. |
[12] |
I. Lasiecka and J. Ong,
Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 2069-2107.
doi: 10.1080/03605309908821495. |
[13] |
J. Lagnese,
Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., 21 (1983), 68-85.
|
[14] |
K. S. Liu,
Locally distributed control and damping for the conservative system, SIAM J. Control Optim., 35 (1997), 1574-1590.
doi: 10.1137/S0363012995284928. |
[15] |
Y. X. Liu and P. F. Yao,
Energy decay rate of the wave equations on Riemannian manifolds with critical potential, Appl. Math. Optim., 78 (2018), 61-101.
doi: 10.1007/s00245-017-9399-z. |
[16] |
C. Morawetz,
Time decay for nonlinear Klein-Gordon equations, Proc. Roy. Soc. London Ser. A, 306 (1968), 503-518.
doi: 10.1098/rspa.1968.0151. |
[17] |
P. Martinez,
A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut., 12 (1999), 251-283.
doi: 10.5209/rev_REMA.1999.v12.n1.17227. |
[18] |
M. Nakao,
Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305 (1996), 403-417.
doi: 10.1007/BF01444231. |
[19] |
M. Nakao,
Energy decay for the linear and semilinear wave equation in exterior domains with some localized dissipations, Math. Z., 238 (2001), 781-797.
doi: 10.1007/s002090100275. |
[20] |
M. Nakao,
Existence of global solutions for the Kirchhoff-type quasilinear wave equation in exterior domains with a half-linear dissipation, Kyushu J. Math., 58 (2004), 373-391.
doi: 10.2206/kyushujm.58.373. |
[21] |
Z. H. Ning, F. Y. Yang and X. P. Zhao, Escape metrics and its applications, preprint, 2018, arXiv: 1811.12668. |
[22] |
M. A. Rammaha and T. A. Strei,
Global existence and nonexistence for nonlinear wave equations with damping and source terms, Trans. Amer. Math. Soc., 354 (2002), 3621-3637.
doi: 10.1090/S0002-9947-02-03034-9. |
[23] |
M. Slemrod,
Weak asymptotic decay via a related invariance principle for a wave equation with nonlinear, nonmonotone damping, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 87-97.
doi: 10.1017/S0308210500023970. |
[24] |
G. Todorova,
Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Anal., 41 (2000), 891-905.
doi: 10.1016/S0362-546X(98)00317-4. |
[25] |
G. Todorova and B. Yordanov,
The energy decay problem for wave equations with nonlinear dissipative terms in ${\mathbb{R}}^n$, Indiana Univ. Math. J., 56 (2007), 389-416.
doi: 10.1512/iumj.2007.56.2963. |
[26] |
G. Todorova and B. Yordanov,
Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.
doi: 10.1006/jdeq.2000.3933. |
[27] |
L. R. Tcheugoué Tébou,
Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, 145 (1998), 502-524.
doi: 10.1006/jdeq.1998.3416. |
[28] |
P. F. Yao,
Energy decay for the cauchy problem of the linear wave equation of variable coefficients with dissipation, Chin. Ann. Math. Ser. B, 31 (2010), 59-70.
doi: 10.1007/s11401-008-0421-2. |
[29] |
P. F. Yao, Observability inequalities for the Euler-Bernoulli plate with variable coefficients, in Contemporary Mathematics, Vol. 268, Amer. Math. Soc., Providence, RI, (2000), 383–406.
doi: 10.1090/conm/268/04320. |
[30] |
P. F. Yao, Modeling and Control in Vibrational and Structual Dynamics. A Differential Geometric Approach, CRC Press, Boca Raton, FL, 2011.
doi: 10.1201/b11042.![]() ![]() ![]() |
[31] |
P. F. Yao, Y. X. Liu and J. Li,
Decay rates of the hyperbolic equation in an exterior domain with half-linear and nonlinear boundary dissipations, J. Syst. Sci. Complex, 29 (2016), 657-680.
doi: 10.1007/s11424-015-4233-7. |
[32] |
W. Zhang and Z. F. Zhang,
Stabilization of transmission coupled wave and Euler-Bernoulli equations on Riemannian manifolds by nonlinear feedbacks, J. Math. Anal. Appl., 422 (2015), 1504-1526.
doi: 10.1016/j.jmaa.2014.09.044. |
show all references
References:
[1] |
K. Ammari and S. Nicaise,
Stabilization of a transmission wave/plate equation, J. Differential Equations, 249 (2010), 707-727.
doi: 10.1016/j.jde.2010.03.007. |
[2] |
V. Barbu, Analysis and control of nonlinear infinite dimensional systems, Academic Press, Inc., Boston, MA, 1993.
![]() ![]() |
[3] |
C. Bardos, G. Lebeau and J. Rauch,
Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
|
[4] |
C. A. Bortot, M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Piccione,
Exponential asymptotic stability for the Klein-Gordon equation on non-compact Riemannian manifolds, Appl. Math. Optim., 78 (2018), 219-265.
doi: 10.1007/s00245-017-9405-5. |
[5] |
N. Burq and R. Joly,
Exponential decay for the damped wave equation in unbounded domains, Commun. Contemp. Math., 18 (2016), 1650012.
doi: 10.1142/S0219199716500127. |
[6] |
J. M. Bouclet and J. Royer,
Local energy decay for the damped wave equation, J. Funct. Anal., 266 (2014), 4538-4615.
doi: 10.1016/j.jfa.2014.01.028. |
[7] |
V. Barbu, I. Lasiecka and A. M. Rammaha,
Blow-up of generalized solutions to wave equations with nonlinear degenerate damping and source terms, Indiana Univ. Math. J., 56 (2007), 995-1021.
doi: 10.1512/iumj.2007.56.2990. |
[8] |
B. Dehman, G. Lebeau and E. Zuazua,
Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. École Norm. Sup., 36 (2003), 525-551.
doi: 10.1016/S0012-9593(03)00021-1. |
[9] |
S. J. Feng and D. X. Feng,
Nonlinear internal damping of wave equations with variable coefficients, Acta Math. Sin. (Engl. Ser.), 20 (2004), 1057-1072.
doi: 10.1007/s10114-004-0394-3. |
[10] |
B. Gong, F. Y. Yang and X. Zhao,
Stabilization of the transmission wave/plate equation with variable coefficients, J. Math. Anal. Appl., 455 (2017), 947-962.
doi: 10.1016/j.jmaa.2017.06.014. |
[11] |
A. Haraux,
Stabilization of trajectories for some weakly damped hyperbolic equations, J. Differential Equations, 59 (1985), 145-154.
doi: 10.1016/0022-0396(85)90151-2. |
[12] |
I. Lasiecka and J. Ong,
Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 24 (1999), 2069-2107.
doi: 10.1080/03605309908821495. |
[13] |
J. Lagnese,
Control of wave processes with distributed controls supported on a subregion, SIAM J. Control Optim., 21 (1983), 68-85.
|
[14] |
K. S. Liu,
Locally distributed control and damping for the conservative system, SIAM J. Control Optim., 35 (1997), 1574-1590.
doi: 10.1137/S0363012995284928. |
[15] |
Y. X. Liu and P. F. Yao,
Energy decay rate of the wave equations on Riemannian manifolds with critical potential, Appl. Math. Optim., 78 (2018), 61-101.
doi: 10.1007/s00245-017-9399-z. |
[16] |
C. Morawetz,
Time decay for nonlinear Klein-Gordon equations, Proc. Roy. Soc. London Ser. A, 306 (1968), 503-518.
doi: 10.1098/rspa.1968.0151. |
[17] |
P. Martinez,
A new method to obtain decay rate estimates for dissipative systems with localized damping, Rev. Mat. Complut., 12 (1999), 251-283.
doi: 10.5209/rev_REMA.1999.v12.n1.17227. |
[18] |
M. Nakao,
Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305 (1996), 403-417.
doi: 10.1007/BF01444231. |
[19] |
M. Nakao,
Energy decay for the linear and semilinear wave equation in exterior domains with some localized dissipations, Math. Z., 238 (2001), 781-797.
doi: 10.1007/s002090100275. |
[20] |
M. Nakao,
Existence of global solutions for the Kirchhoff-type quasilinear wave equation in exterior domains with a half-linear dissipation, Kyushu J. Math., 58 (2004), 373-391.
doi: 10.2206/kyushujm.58.373. |
[21] |
Z. H. Ning, F. Y. Yang and X. P. Zhao, Escape metrics and its applications, preprint, 2018, arXiv: 1811.12668. |
[22] |
M. A. Rammaha and T. A. Strei,
Global existence and nonexistence for nonlinear wave equations with damping and source terms, Trans. Amer. Math. Soc., 354 (2002), 3621-3637.
doi: 10.1090/S0002-9947-02-03034-9. |
[23] |
M. Slemrod,
Weak asymptotic decay via a related invariance principle for a wave equation with nonlinear, nonmonotone damping, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 87-97.
doi: 10.1017/S0308210500023970. |
[24] |
G. Todorova,
Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Anal., 41 (2000), 891-905.
doi: 10.1016/S0362-546X(98)00317-4. |
[25] |
G. Todorova and B. Yordanov,
The energy decay problem for wave equations with nonlinear dissipative terms in ${\mathbb{R}}^n$, Indiana Univ. Math. J., 56 (2007), 389-416.
doi: 10.1512/iumj.2007.56.2963. |
[26] |
G. Todorova and B. Yordanov,
Critical exponent for a nonlinear wave equation with damping, J. Differential Equations, 174 (2001), 464-489.
doi: 10.1006/jdeq.2000.3933. |
[27] |
L. R. Tcheugoué Tébou,
Stabilization of the wave equation with localized nonlinear damping, J. Differential Equations, 145 (1998), 502-524.
doi: 10.1006/jdeq.1998.3416. |
[28] |
P. F. Yao,
Energy decay for the cauchy problem of the linear wave equation of variable coefficients with dissipation, Chin. Ann. Math. Ser. B, 31 (2010), 59-70.
doi: 10.1007/s11401-008-0421-2. |
[29] |
P. F. Yao, Observability inequalities for the Euler-Bernoulli plate with variable coefficients, in Contemporary Mathematics, Vol. 268, Amer. Math. Soc., Providence, RI, (2000), 383–406.
doi: 10.1090/conm/268/04320. |
[30] |
P. F. Yao, Modeling and Control in Vibrational and Structual Dynamics. A Differential Geometric Approach, CRC Press, Boca Raton, FL, 2011.
doi: 10.1201/b11042.![]() ![]() ![]() |
[31] |
P. F. Yao, Y. X. Liu and J. Li,
Decay rates of the hyperbolic equation in an exterior domain with half-linear and nonlinear boundary dissipations, J. Syst. Sci. Complex, 29 (2016), 657-680.
doi: 10.1007/s11424-015-4233-7. |
[32] |
W. Zhang and Z. F. Zhang,
Stabilization of transmission coupled wave and Euler-Bernoulli equations on Riemannian manifolds by nonlinear feedbacks, J. Math. Anal. Appl., 422 (2015), 1504-1526.
doi: 10.1016/j.jmaa.2014.09.044. |
[1] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1857-1871. doi: 10.3934/cpaa.2021043 |
[2] |
Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic and Related Models, 2017, 10 (3) : 785-797. doi: 10.3934/krm.2017031 |
[3] |
Fengyan Yang. Exact boundary null controllability for a coupled system of plate equations with variable coefficients. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021036 |
[4] |
Q-Heung Choi, Changbum Chun, Tacksun Jung. The multiplicity of solutions and geometry in a wave equation. Communications on Pure and Applied Analysis, 2003, 2 (2) : 159-170. doi: 10.3934/cpaa.2003.2.159 |
[5] |
Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations and Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020 |
[6] |
Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control and Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017 |
[7] |
Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609 |
[8] |
Walid Boughamda. Boundary stabilization for a star-shaped network of variable coefficients strings linked by a point mass. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1103-1125. doi: 10.3934/dcdss.2021139 |
[9] |
Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057 |
[10] |
Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021 |
[11] |
Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control and Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31 |
[12] |
Xiaorui Wang, Genqi Xu. Uniform stabilization of a wave equation with partial Dirichlet delayed control. Evolution Equations and Control Theory, 2020, 9 (2) : 509-533. doi: 10.3934/eect.2020022 |
[13] |
Zhiling Guo, Shugen Chai. Exponential stabilization of the problem of transmission of wave equation with linear dynamical feedback control. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022001 |
[14] |
Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052 |
[15] |
Louis Tebou. Simultaneous stabilization of a system of interacting plate and membrane. Evolution Equations and Control Theory, 2013, 2 (1) : 153-172. doi: 10.3934/eect.2013.2.153 |
[16] |
Fathi Hassine. Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1757-1774. doi: 10.3934/dcdsb.2016021 |
[17] |
Joachim Escher, Boris Kolev, Marcus Wunsch. The geometry of a vorticity model equation. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1407-1419. doi: 10.3934/cpaa.2012.11.1407 |
[18] |
Jamel Ben Amara, Emna Beldi. Simultaneous controllability of two vibrating strings with variable coefficients. Evolution Equations and Control Theory, 2019, 8 (4) : 687-694. doi: 10.3934/eect.2019032 |
[19] |
Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial and Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819 |
[20] |
Fágner D. Araruna, Flank D. M. Bezerra, Milton L. Oliveira. Rate of attraction for a semilinear thermoelastic system with variable coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3211-3226. doi: 10.3934/dcdsb.2018316 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]