In the present paper we prove an homogenisation result for a locally perturbed transport stochastic equation. The model is similar to the stochastic Burgers' equation and it is inspired by the LWR model. Therefore, the interest in studying this equation comes from it's application for traffic flow modelling. In the first part of paper we study the inhomogeneous equation. More precisely we give an existence and uniqueness result for the solution. The technical difficulties of this part come from the presence of the function $ \varphi $ under assumptions coherent for the model, which is giving the inhomogeneity with respect to the space variable, not present in the classical results. The second part of the paper is the homogenisation result in space.
Citation: |
[1] |
A. Amosov and G. Panasenko, Homogenization of the integro-differential burgers equation, in Integral Methods in Science and Engineering, Vol. 1, Birkhäuser Boston, Boston, MA, 2010, 1–8.
doi: 10.1007/978-0-8176-4899-2_1.![]() ![]() ![]() |
[2] |
G. Da Prato and D. Gatarek, Stochastic burgers equation with correlated noise, Stochastics and Stochastic Reports, 52 (1995), 29-41.
doi: 10.1080/17442509508833962.![]() ![]() |
[3] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2008. https://books.google.fr/books?id=JYiL8zz_nC8C.
![]() |
[4] |
G. Da Prato, A. Debussche and R. Temam, Stochastic Burgers' equation, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 389-402.
doi: 10.1007/BF01194987.![]() ![]() ![]() |
[5] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[6] |
M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.
![]() ![]() |
[7] |
I. Gyoengy and D. Nualart, On the stochastic Burgers' equation in the real line, Ann. Probab., 27 (1999), 782-802.
doi: 10.1214/aop/1022677386.![]() ![]() ![]() |
[8] |
I. Hosokawa and K. Yamamoto, Turbulence in the randomly forced, one-dimensional Burgers flow, J. Stat. Phys., 13 (1975), 245-272.
doi: 10.1007/BF01012841.![]() ![]() |
[9] |
M. J. Lighthill and G. B. Whitham, On kinematic waves Ⅱ. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London Ser. A, 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089.![]() ![]() ![]() |
[10] |
P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42.![]() ![]() ![]() |
[11] |
F. Rothe, Global Solutions of Reaction-Diffusion Systems, Vol. 1072, Springer-Verlag, Berlin, 1984.
doi: 10.1007/BFb0099278.![]() ![]() ![]() |