In this article, we deal with the existence of S-asymptotically $ \omega $-periodic mild solutions of Hilfer fractional evolution equations. We also investigate the Ulam-Hyers and Ulam-Hyers-Rassias stability of similar solutions. These results are established in Banach space with the help of resolvent operator functions and fixed point technique on an unbounded interval. An example is also presented for the illustration of obtained results.
Citation: |
[1] |
S. Abbas, M. Benchohra and A. Petrusel, Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operators theory, Fract. Calc. Appl. Anal., 20 (2017), 384-398.
doi: 10.1515/fca-2017-0020.![]() ![]() ![]() |
[2] |
R. P. Agarwal, S. Hristova and D. O'Regand, Lyapunov functions to Caputo reaction-diffusion fractional neural networks with time-varying delays, J. Math. Comput. SCI-JM., 18 (2018), 328-345.
![]() |
[3] |
H. M. Ahmeda, M. M. El-Boraib, H. M. El-Owaidyc and A. S. Ghanema, Null controllability of fractional stochastic delay integro-differential equations, J. Math. Comput. SCI-JM., 19 (2019), 143-150.
doi: 10.22436/jmcs.019.03.01.![]() ![]() |
[4] |
I. Ahmed, P. Kumam, K. Shah, P. Borisut, K. Sitthithakerngkiet and M. A. Demba, Stability results for implicit fractional pantograph differential equations via $\phi $-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics., 8 (2020), 94.
![]() |
[5] |
M. Ahmad, A. Zada and J. Alzabut, Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer -Hadamard type, Demonstratio Math., 52 (2019), 283-295.
doi: 10.1515/dema-2019-0024.![]() ![]() ![]() |
[6] |
S. Alia, M. Arifa, D. Lateefb and M. Akramc, Stable monotone iterative solutions to a class of bound-ary value problems of nonlinear fractional order differential equations, J. Nonlinear Sci. Appl., 12 (2019), 376-386.
doi: 10.22436/jnsa.012.06.04.![]() ![]() ![]() |
[7] |
A. Atangana and J. F. Gomez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu., Numer. Meth. Part. Diff. Eqs., 34 (2018), 1502-1523.
doi: 10.1002/num.22195.![]() ![]() ![]() |
[8] |
P. Bedi, A. Kumar, T. Abdeljawad and A. Khan, Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations, Adv. Diff. Equ., Paper No. 155, 16 pp.
doi: 10.1186/s13662-020-02615-y.![]() ![]() ![]() |
[9] |
A. Coronel-Escamilla, J. F. Gomez-Aguilar, E. Alvarado-Mendez, G. V. Guerrero-Ramirez and R. F. Escobar-Jimenez, Fractional dynamics of charged particles in magnetic fields, Int. J. Mod. Phys. C., 27 (2016), 1650084.
doi: 10.1142/S0129183116500844.![]() ![]() ![]() |
[10] |
B. Cuahutenango-Barro, M. A. Taneco-Hernández and J. F. Gómez-Aguilar, On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel, Chaos Solitons Fractals, 115 (2018), 283-299.
doi: 10.1016/j.chaos.2018.09.002.![]() ![]() ![]() |
[11] |
C. Cuevas and J. C. de Souza, Existence of S-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal. Theory Methods Appl., 72 (2010), 1683-1689.
doi: 10.1016/j.na.2009.09.007.![]() ![]() ![]() |
[12] |
A. Devi, A. Kumar, T. Abdeljawad and A. Khan, Existence and stability analysis of solutions for fractional Langevin equa- tion with nonlocal integral and anti-periodic type boundary conditions, Fractals, (2020).
doi: 10.1142/S0218348X2040006X.![]() ![]() |
[13] |
J. F. Gómez-Aguilar, M. Miranda-Hernandez, M. G. López-López, V. M. Alvarado-Martínez and D. Baleanu, Modeling and simulation of the fractional space-time diffusion equation, Commun. Nonlinear Sci. Numer. Simul., 30 (2016), 115-127.
doi: 10.1016/j.cnsns.2015.06.014.![]() ![]() ![]() |
[14] |
J. F. Gómez-Aguilar and A. Atangana, Fractional Hunter-Saxton equation involving partial operators with bi-order in Riemann-Liouville and Liouville-Caputo sense, Eur. Phys. J. Plus, 132 (2017), 1-18.
doi: 10.1140/epjp/i2017-11371-6.![]() ![]() |
[15] |
J. F. Gómez-Aguilar, Space-time fractional diffusion equation using a derivative with nonsingular and regular kernel, Physica A., 465 (2017), 562-572.
doi: 10.1016/j.physa.2016.08.072.![]() ![]() ![]() |
[16] |
S. Harikrishnan, K. Shah, D. Baleanu and K. Kanagarajan, Note on the solution of random differential equations via $ \psi$-Hilfer fractional derivative, Adv. Diff. Equ, 2018 (2018), 224.
doi: 10.1186/s13662-018-1678-8.![]() ![]() ![]() |
[17] |
H. R. Henríquez, M. Pierri and P. Táboas, On S-asymptotically $\omega$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343 (2008), 1119-1130.
doi: 10.1016/j.jmaa.2008.02.023.![]() ![]() ![]() |
[18] |
H. R. Henríquez, M. Pierri and P. Táboas, Existence of S-asymptotically $\omega$-periodic solutions for abstract neutral equations, B. Aust. Math Soc., 78 (2008), 365-382.
doi: 10.1017/S0004972708000713.![]() ![]() ![]() |
[19] |
H. R. Henríquez, Asymptotically periodic solutions of abstract differential equations, Nonlinear Anal. Theory Methods Appl., 80 (2013), 135-149.
doi: 10.1016/j.na.2012.10.010.![]() ![]() ![]() |
[20] |
R, Hilfer, Fractional time evolution, in: Applications of Fractional Calculus in Physics, 2000, 87–130
doi: 10.1142/9789812817747_0002.![]() ![]() ![]() |
[21] |
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A., 27 (1941), 222-224.
doi: 10.1073/pnas.27.4.222.![]() ![]() ![]() |
[22] |
F. Jarad, S. Harikrishnan, K. Shah and K. Kanagarajan, Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative, Discrete Cont. Dyn-S., 13 (2020), 723-739.
doi: 10.3934/dcdss.2020040.![]() ![]() |
[23] |
A. Khan, H. Khan, J. F. Gómez-Aguilar and T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Solitons Fractals, 127 (2019), 422-427.
doi: 10.1016/j.chaos.2019.07.026.![]() ![]() ![]() |
[24] |
A. Khan, J. F. Gómez-Aguilar, T. Abdeljawad and H. Khan, Stability and numerical simulation of a fractional order plant-nectar-pollinator model, Alex. Eng. J., 59 (2020), 49-59.
doi: 10.1016/j.aej.2019.12.007.![]() ![]() |
[25] |
A. Khan, T. S. Khan, M. I. Syam and H. Khan, Analytical solutions of time-fractional wave equation by double Laplace transform method, Eur. Phys. J. Plus., 134 (2019), 163.
doi: 10.1140/epjp/i2019-12499-y.![]() ![]() |
[26] |
H. Khan, A. Khan, T. Abdeljawad and A. Alkhazzan, Existence results in Banach space for a nonlinear impulsive system, Adv. Diff. Equ., 18 (2019), Paper No. 18, 16 pp.
doi: 10.1186/s13662-019-1965-z.![]() ![]() ![]() |
[27] |
H. Khan, J. F. Gómez-Aguilar, A. Khan and T. S. Khan, Stability analysis for fractional order advection- reaction diffusion system, Physica A., 521 (2019), 737-751.
doi: 10.1016/j.physa.2019.01.102.![]() ![]() ![]() |
[28] |
H. Khan, C. Tunc and A. Khan, Stability results and existence theorems for nonlinear delay-fractional differential equations with $\varphi^* _p $-operator, J. Appl. Anal. Comp., 10 (2020), 584-597.
![]() |
[29] |
O. Khana, S. Aracib and M. Saifa, Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function, J. Math. Comput. SCI-JM., 20 (2020), 122-130.
doi: 10.22436/jmcs.020.02.05.![]() ![]() |
[30] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 204. Elsevier Science B.V., Amsterdam, 2006.
![]() ![]() |
[31] |
Q. Li and M. Wei, Existence and asymptotic stability of periodic solutions for impulsive delay evolution equations, Adv. Diff. Equ., (2019), 1–19.
doi: 10.1186/s13662-019-1994-7.![]() ![]() ![]() |
[32] |
J. Mu, Y. Zhou and L. Peng, Periodic Solutions and Asymptotically Periodic Solutions to Fractional Evolution Equations, Discrete Dyn. Nat. Soc., (2017), Art. ID 1364532, 12 pp.
doi: 10.1155/2017/1364532.![]() ![]() ![]() |
[33] |
K. M. Saad and J. F. Gómez-Aguilar, Analysis of reaction-diffusion system via a new fractional derivative with non-singular kernel, Physica A., 509 (2018), 703-716.
doi: 10.1016/j.physa.2018.05.137.![]() ![]() ![]() |
[34] |
R. Saadati, E. Pourhadi and B. Samet, On the $PC $-mild solutions of abstract fractional evolution equations with non-instantaneous impulses via the measure of noncompactness, Bound. Value. Probl., (2019), Paper No. 19, 23 pp.
doi: 10.1186/s13661-019-1137-9.![]() ![]() ![]() |
[35] |
N. Sene, Stability analysis of the generalized fractional differential equations with and without exogenous inputs, J. Nonlinear Sci. Appl., 12 (2019), 562-572.
doi: 10.22436/jnsa.012.09.01.![]() ![]() ![]() |
[36] |
K. Shah, A. Ali and S. Bushnaq, Hyers-Ulam stability analysis to implicit Cauchy problem of fractional differential equations with impulsive conditions, Math. Method Appl. Sci., 41 (2018), 8329-8343.
doi: 10.1002/mma.5292.![]() ![]() ![]() |
[37] |
M. Sher, K. Shah and J. Rassias, On qualitative theory of fractional order delay evolution equation via the prior estimate method, Math. Method Appl. Sci., 43 (2020), 6464-6475.
doi: 10.1002/mma.6390.![]() ![]() |
[38] |
J. Sousa, Existence of mild solutions to Hilfer fractional evolution equations in Banach space, preprint, arXiv: 1812.02213.
![]() |
[39] |
J. V. D. C. Sousa and E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91.
doi: 10.1016/j.cnsns.2018.01.005.![]() ![]() ![]() |
[40] |
J. V. D. C. Sousa and E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi $-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87–106. arXiv: 1709.03634.
doi: 10.7153/dea-2019-11-02.![]() ![]() ![]() |
[41] |
J. V. D. C. Sousa and E. C. de Oliveira, Leibniz type rule: $\psi $-Hilfer fractional operator, Communications in Nonlinear Science and Numerical Simulation, 77 (2019), 305-311.
doi: 10.1016/j.cnsns.2019.05.003.![]() ![]() ![]() |
[42] |
J. V. D. C. Sousa and E. C. de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\psi $-Hilfer operator, Journal of Fixed Point Theory and Applications, 20 (2018), 96 21 pp.
doi: 10.1007/s11784-018-0587-5.![]() ![]() ![]() |
[43] |
S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 8 1960.
![]() ![]() |
[44] |
Asma, G. ur Rahman and K. Shah, Mathematical Analysis of Implicit Impulsive Switched Coupled Evolution Equations, Results Math., 74 (2019), 142.
doi: 10.1007/s00025-019-1066-z.![]() ![]() ![]() |
[45] |
J. Wang, K. Shah and A. Ali, Existence and Hyers-Ulam stability of fractional nonlinear impulsive switched coupled evolution equations, Math. Method Appl. Sci., 41 (2018), 2392-2402.
doi: 10.1002/mma.4748.![]() ![]() ![]() |