-
Previous Article
Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics
- EECT Home
- This Issue
-
Next Article
Stabilization of higher order Schrödinger equations on a finite interval: Part I
Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $
1. | Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, 2390 Marrakesh, Morocco |
This article investigates the controllability for neutral stochastic delay functional integro-differential equations driven by a fractional Brownian motion, with Hurst parameter lesser than $ 1/2 $. We employ the theory of resolvent operators developed by [
References:
[1] |
H. M. Ahmed and J. Wang,
Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, Bull. Iran. Math. Soc., 44 (2018), 673-690.
doi: 10.1007/s41980-018-0043-8. |
[2] |
M. A. Alqudah, C. Ravichandran, T. Abdeljawad and N. Valliammal, New results on Caputo fractional-order neutral differential inclusions without compactness, Adv Differ Equ, 2019 (2019), Paper No. 528, 14 pp.
doi: 10.1186/s13662-019-2455-z. |
[3] |
P. Balasubramaniam, N. Kumaresan, K. Ratnavelu and P. Tamilalagan,
Local and global existence of mild solution for impulsive fractional stochastic differential equations, Bull. Malays. Math. Sci. Soc., 38 (2015), 867-884.
doi: 10.1007/s40840-014-0054-4. |
[4] |
A. Boudaoui and E. Lakhel,
Controllability of stochastic impulsive neutral functional differential equations driven by fractional Brownian motion with infinite delay, Differ Equ Dyn Syst, 26 (2018), 247-263.
doi: 10.1007/s12591-017-0401-7. |
[5] |
B. Boufoussi and S. Hajji, Transportation inequalities for neutral stochastic differential equations driven by fractional Brownian motion with Hurst parameter lesser than 1/2, Mediterr. J. Math., 14 (2017), Paper No. 192, 16 pp.
doi: 10.1007/s00009-017-0992-9. |
[6] |
T. Caraballo and M. A. Diop,
Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion, Front. Math. China, 8 (2013), 745-760.
doi: 10.1007/s11464-013-0300-3. |
[7] |
A. Chadha and D. N. Pandey,
Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay, Nonlinear Anal., 128 (2015), 149-175.
doi: 10.1016/j.na.2015.07.018. |
[8] |
J. Cui and L. Yan,
Controllability of neutral stochastic evolution equations driven by fractional Brownian motion, Acta Mathematica Scientia B, 37 (2017), 108-118.
doi: 10.1016/S0252-9602(16)30119-9. |
[9] |
W. Desch, R. Grimmer and W. Schappacher,
Some consideration for linear integro-differential equations, J. Math. Anal. Appl., 104 (1984), 219-234.
doi: 10.1016/0022-247X(84)90044-1. |
[10] |
R. C. Grimmer,
Resolvent operators for integral equations in a Banach space, Transactions of the American Mathematical Society, 273 (1982), 333-349.
doi: 10.1090/S0002-9947-1982-0664046-4. |
[11] |
K. Jothimani, K. Kaliraj, Z. Hammouch and C. Ravichandran, New results on controllability in the framework of fractional integro-differential equations with nondense domain, Eur. Phys. J. Plus, 134 (2019). |
[12] |
E. H. Lakhel,
Controllability of neutral stochastic functional integro-differential equations driven by fractional Brownian motion, Stoch. Ana. and App., 34 (2016), 427-440.
doi: 10.1080/07362994.2016.1149718. |
[13] |
E. Lakhel,
Controllability of impulsive neutral stochastic integro-differential systems driven by FBM with unbounded delay, Le Matematiche, 73 (2018), 319-339.
doi: 10.4418/2018.73.2.6. |
[14] |
E. Lakhel and M. A. McKibben,
Controllability for time-dependent neutral stochastic functional differential equations with Rosenblatt process and impulses, Int. J. Control Autom. Syst., 17 (2019), 286-297.
doi: 10.1007/s12555-016-0363-5. |
[15] |
J. A. Machado, C. Ravichandran, M. Rivero and J. J. Trujillo, Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions, Fixed Point Theory Appl, 2013 (2013), 16pp.
doi: 10.1186/1687-1812-2013-66. |
[16] |
D. Nualart, The Malliavin Calculus and Related Topics, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2006. |
[17] |
J. Pruss, Evolutionary Integral Equations and Applications, Birkhauser, Basel, 1993.
doi: 10.1007/978-3-0348-8570-6. |
[18] |
C. Ravichandran, N. Valliammal and J. J. Nieto,
New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J.Franklin I., 356 (2019), 1535-1565.
doi: 10.1016/j.jfranklin.2018.12.001. |
[19] |
Y. Ren, H. Dai and R. Sakthivel,
Approximate controllability of stochastic differential system driven by a Levy process, Inter nat. J. Control, 86 (2013), 1158-1164.
doi: 10.1080/00207179.2013.786188. |
[20] |
T. Sathiyaraj and P. Balasubramaniam, Controllability of fractional neutral stochastic integro-differential inclusions of order $p\in(0, 1]$, $q\in(1, 2]$ with fractional Brownian motion, Eur. Phys. J. Plus 131, 357 (2016). |
[21] |
P. Tamilalagan and P. Balasubramanniam,
Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators, Int. J. of Control., 90 (2017), 1713-1727.
doi: 10.1080/00207179.2016.1219070. |
[22] |
N. Valliammal, C. Ravichandran and J. H. Park,
On the controllability of fractional neutral integro-differential delay equations with nonlocal conditions, Math. Methods Appl. Sci., 40 (2017), 5044-5055.
doi: 10.1002/mma.4369. |
[23] |
J. Wang,
Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces, Appl. Math. Comput., 256 (2015), 315-323.
doi: 10.1016/j.amc.2014.12.155. |
show all references
References:
[1] |
H. M. Ahmed and J. Wang,
Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, Bull. Iran. Math. Soc., 44 (2018), 673-690.
doi: 10.1007/s41980-018-0043-8. |
[2] |
M. A. Alqudah, C. Ravichandran, T. Abdeljawad and N. Valliammal, New results on Caputo fractional-order neutral differential inclusions without compactness, Adv Differ Equ, 2019 (2019), Paper No. 528, 14 pp.
doi: 10.1186/s13662-019-2455-z. |
[3] |
P. Balasubramaniam, N. Kumaresan, K. Ratnavelu and P. Tamilalagan,
Local and global existence of mild solution for impulsive fractional stochastic differential equations, Bull. Malays. Math. Sci. Soc., 38 (2015), 867-884.
doi: 10.1007/s40840-014-0054-4. |
[4] |
A. Boudaoui and E. Lakhel,
Controllability of stochastic impulsive neutral functional differential equations driven by fractional Brownian motion with infinite delay, Differ Equ Dyn Syst, 26 (2018), 247-263.
doi: 10.1007/s12591-017-0401-7. |
[5] |
B. Boufoussi and S. Hajji, Transportation inequalities for neutral stochastic differential equations driven by fractional Brownian motion with Hurst parameter lesser than 1/2, Mediterr. J. Math., 14 (2017), Paper No. 192, 16 pp.
doi: 10.1007/s00009-017-0992-9. |
[6] |
T. Caraballo and M. A. Diop,
Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion, Front. Math. China, 8 (2013), 745-760.
doi: 10.1007/s11464-013-0300-3. |
[7] |
A. Chadha and D. N. Pandey,
Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay, Nonlinear Anal., 128 (2015), 149-175.
doi: 10.1016/j.na.2015.07.018. |
[8] |
J. Cui and L. Yan,
Controllability of neutral stochastic evolution equations driven by fractional Brownian motion, Acta Mathematica Scientia B, 37 (2017), 108-118.
doi: 10.1016/S0252-9602(16)30119-9. |
[9] |
W. Desch, R. Grimmer and W. Schappacher,
Some consideration for linear integro-differential equations, J. Math. Anal. Appl., 104 (1984), 219-234.
doi: 10.1016/0022-247X(84)90044-1. |
[10] |
R. C. Grimmer,
Resolvent operators for integral equations in a Banach space, Transactions of the American Mathematical Society, 273 (1982), 333-349.
doi: 10.1090/S0002-9947-1982-0664046-4. |
[11] |
K. Jothimani, K. Kaliraj, Z. Hammouch and C. Ravichandran, New results on controllability in the framework of fractional integro-differential equations with nondense domain, Eur. Phys. J. Plus, 134 (2019). |
[12] |
E. H. Lakhel,
Controllability of neutral stochastic functional integro-differential equations driven by fractional Brownian motion, Stoch. Ana. and App., 34 (2016), 427-440.
doi: 10.1080/07362994.2016.1149718. |
[13] |
E. Lakhel,
Controllability of impulsive neutral stochastic integro-differential systems driven by FBM with unbounded delay, Le Matematiche, 73 (2018), 319-339.
doi: 10.4418/2018.73.2.6. |
[14] |
E. Lakhel and M. A. McKibben,
Controllability for time-dependent neutral stochastic functional differential equations with Rosenblatt process and impulses, Int. J. Control Autom. Syst., 17 (2019), 286-297.
doi: 10.1007/s12555-016-0363-5. |
[15] |
J. A. Machado, C. Ravichandran, M. Rivero and J. J. Trujillo, Controllability results for impulsive mixed-type functional integro-differential evolution equations with nonlocal conditions, Fixed Point Theory Appl, 2013 (2013), 16pp.
doi: 10.1186/1687-1812-2013-66. |
[16] |
D. Nualart, The Malliavin Calculus and Related Topics, 2$^{nd}$ edition, Springer-Verlag, Berlin, 2006. |
[17] |
J. Pruss, Evolutionary Integral Equations and Applications, Birkhauser, Basel, 1993.
doi: 10.1007/978-3-0348-8570-6. |
[18] |
C. Ravichandran, N. Valliammal and J. J. Nieto,
New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J.Franklin I., 356 (2019), 1535-1565.
doi: 10.1016/j.jfranklin.2018.12.001. |
[19] |
Y. Ren, H. Dai and R. Sakthivel,
Approximate controllability of stochastic differential system driven by a Levy process, Inter nat. J. Control, 86 (2013), 1158-1164.
doi: 10.1080/00207179.2013.786188. |
[20] |
T. Sathiyaraj and P. Balasubramaniam, Controllability of fractional neutral stochastic integro-differential inclusions of order $p\in(0, 1]$, $q\in(1, 2]$ with fractional Brownian motion, Eur. Phys. J. Plus 131, 357 (2016). |
[21] |
P. Tamilalagan and P. Balasubramanniam,
Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators, Int. J. of Control., 90 (2017), 1713-1727.
doi: 10.1080/00207179.2016.1219070. |
[22] |
N. Valliammal, C. Ravichandran and J. H. Park,
On the controllability of fractional neutral integro-differential delay equations with nonlocal conditions, Math. Methods Appl. Sci., 40 (2017), 5044-5055.
doi: 10.1002/mma.4369. |
[23] |
J. Wang,
Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces, Appl. Math. Comput., 256 (2015), 315-323.
doi: 10.1016/j.amc.2014.12.155. |
[1] |
Jiří Neustupa. On $L^2$-Boundedness of a $C_0$-Semigroup generated by the perturbed oseen-type operator arising from flow around a rotating body. Conference Publications, 2007, 2007 (Special) : 758-767. doi: 10.3934/proc.2007.2007.758 |
[2] |
Yu-Xia Liang, Ze-Hua Zhou. Supercyclic translation $C_0$-semigroup on complex sectors. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 361-370. doi: 10.3934/dcds.2016.36.361 |
[3] |
Jacek Banasiak, Marcin Moszyński. Hypercyclicity and chaoticity spaces of $C_0$ semigroups. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 577-587. doi: 10.3934/dcds.2008.20.577 |
[4] |
José A. Conejero, Alfredo Peris. Hypercyclic translation $C_0$-semigroups on complex sectors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1195-1208. doi: 10.3934/dcds.2009.25.1195 |
[5] |
Daliang Zhao, Yansheng Liu, Xiaodi Li. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 455-478. doi: 10.3934/cpaa.2019023 |
[6] |
Yousef Alnafisah, Hamdy M. Ahmed. Neutral delay Hilfer fractional integrodifferential equations with fractional brownian motion. Evolution Equations and Control Theory, 2022, 11 (3) : 925-937. doi: 10.3934/eect.2021031 |
[7] |
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 |
[8] |
Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 |
[9] |
Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197 |
[10] |
Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257 |
[11] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[12] |
Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199 |
[13] |
María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473 |
[14] |
Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483 |
[15] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[16] |
Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084 |
[17] |
Stefan Koch, Andreas Neuenkirch. The Mandelbrot-van Ness fractional Brownian motion is infinitely differentiable with respect to its Hurst parameter. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3865-3880. doi: 10.3934/dcdsb.2018334 |
[18] |
S. Kanagawa, K. Inoue, A. Arimoto, Y. Saisho. Mean square approximation of multi dimensional reflecting fractional Brownian motion via penalty method. Conference Publications, 2005, 2005 (Special) : 463-475. doi: 10.3934/proc.2005.2005.463 |
[19] |
Xin Meng, Cunchen Gao, Baoping Jiang, Hamid Reza Karimi. Observer-based SMC for stochastic systems with disturbance driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022027 |
[20] |
Yixuan Wu, Yanzhi Zhang. Highly accurate operator factorization methods for the integral fractional Laplacian and its generalization. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 851-876. doi: 10.3934/dcdss.2022016 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]