• Previous Article
    Stability and stabilization for the three-dimensional Navier-Stokes-Voigt equations with unbounded variable delay
  • EECT Home
  • This Issue
  • Next Article
    Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics
December  2021, 10(4): 965-1006. doi: 10.3934/eect.2020098

Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains

University of Wuppertal, School of Mathematics and Natural Science, Gaußstraße 20, D-42119 Wuppertal, Germany

* Corresponding author: skrepek@uni-wuppertal.de

Received  October 2019 Revised  June 2020 Published  December 2021 Early access  October 2020

Fund Project: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765579

We consider a port-Hamiltonian system on an open spatial domain $ \Omega \subseteq \mathbb{R}^n $ with bounded Lipschitz boundary. We show that there is a boundary triple associated to this system. Hence, we can characterize all boundary conditions that provide unique solutions that are non-increasing in the Hamiltonian. As a by-product we develop the theory of quasi Gelfand triples. Adding "natural" boundary controls and boundary observations yields scattering/impedance passive boundary control systems. This framework will be applied to the wave equation, Maxwell's equations and Mindlin plate model. Probably, there are even more applications.

Citation: Nathanael Skrepek. Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains. Evolution Equations & Control Theory, 2021, 10 (4) : 965-1006. doi: 10.3934/eect.2020098
References:
[1]

J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal., 243 (2007), 536-565.  doi: 10.1016/j.jfa.2006.10.009.  Google Scholar

[2]

A. BrugnoliD. AlazardV. Pommier-Budinger and D. Matignon, Port-Hamiltonian formulation and symplectic discretization of plate models. Part Ⅰ: Mindlin model for thick plates, Appl. Math. Model., 75 (2019), 940-960.  doi: 10.1016/j.apm.2019.04.035.  Google Scholar

[3]

L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002.  Google Scholar

[4]

R. Cross, Multivalued Linear Operators, volume 213 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998.  Google Scholar

[5]

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990.  Google Scholar

[6]

V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, volume 48 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3714-0.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[8]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, volume 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[9]

M. Kurula and H. Zwart, Linear wave systems on $n$-D spatial domains, Internat. J. Control, 88 (2015), 1063-1077.  doi: 10.1080/00207179.2014.993337.  Google Scholar

[10]

A. Macchelli, C. Melchiorri and L. Bassi, Port-based modelling and control of the Mindlin plate, in Decision and Control, 2005 and 2005 European Control Conference, IEEE, (2005), 5989-5994. doi: 10.1109/CDC.2005.1583120.  Google Scholar

[11]

J. Malinen and O. J. Staffans, Conservative boundary control systems, J. Differential Equations, 231 (2006), 290-312.  doi: 10.1016/j.jde.2006.05.012.  Google Scholar

[12]

J. Malinen and O. J. Staffans, Impedance passive and conservative boundary control systems, Complex Anal. Oper. Theory, 1 (2007), 279-300.  doi: 10.1007/s11785-006-0009-3.  Google Scholar

[13]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[14]

A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control, 1 (2014), 173-378.   Google Scholar

[15]

J. A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D thesis, University of Twente, Netherlands, 2007. Google Scholar

[16]

G. Weiss and O. J. Staffans, Maxwell's equations as a scattering passive linear system, SIAM J. Control Optim., 51 (2013), 3722-3756.  doi: 10.1137/120869444.  Google Scholar

[17]

K. Yosida, Functional Analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, sixth edition, 1980.  Google Scholar

show all references

References:
[1]

J. Behrndt and M. Langer, Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal., 243 (2007), 536-565.  doi: 10.1016/j.jfa.2006.10.009.  Google Scholar

[2]

A. BrugnoliD. AlazardV. Pommier-Budinger and D. Matignon, Port-Hamiltonian formulation and symplectic discretization of plate models. Part Ⅰ: Mindlin model for thick plates, Appl. Math. Model., 75 (2019), 940-960.  doi: 10.1016/j.apm.2019.04.035.  Google Scholar

[3]

L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002.  Google Scholar

[4]

R. Cross, Multivalued Linear Operators, volume 213 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998.  Google Scholar

[5]

R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990.  Google Scholar

[6]

V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, volume 48 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991. doi: 10.1007/978-94-011-3714-0.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[8]

B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, volume 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.  Google Scholar

[9]

M. Kurula and H. Zwart, Linear wave systems on $n$-D spatial domains, Internat. J. Control, 88 (2015), 1063-1077.  doi: 10.1080/00207179.2014.993337.  Google Scholar

[10]

A. Macchelli, C. Melchiorri and L. Bassi, Port-based modelling and control of the Mindlin plate, in Decision and Control, 2005 and 2005 European Control Conference, IEEE, (2005), 5989-5994. doi: 10.1109/CDC.2005.1583120.  Google Scholar

[11]

J. Malinen and O. J. Staffans, Conservative boundary control systems, J. Differential Equations, 231 (2006), 290-312.  doi: 10.1016/j.jde.2006.05.012.  Google Scholar

[12]

J. Malinen and O. J. Staffans, Impedance passive and conservative boundary control systems, Complex Anal. Oper. Theory, 1 (2007), 279-300.  doi: 10.1007/s11785-006-0009-3.  Google Scholar

[13]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[14]

A. van der Schaft and D. Jeltsema, Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control, 1 (2014), 173-378.   Google Scholar

[15]

J. A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D thesis, University of Twente, Netherlands, 2007. Google Scholar

[16]

G. Weiss and O. J. Staffans, Maxwell's equations as a scattering passive linear system, SIAM J. Control Optim., 51 (2013), 3722-3756.  doi: 10.1137/120869444.  Google Scholar

[17]

K. Yosida, Functional Analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, sixth edition, 1980.  Google Scholar

Figure 1.  Illustration of a quasi Gelfand triple, where $ D_{+} = \text{dom} \ \iota_{+} $ and $ D_{-} = \text{dom} \ \iota_{-} $
[1]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[2]

Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069

[3]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[4]

Thanyarat JItpeera, Tamaki Tanaka, Poom Kumam. Triple-hierarchical problems with variational inequality. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021038

[5]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042

[6]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[7]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

[8]

Rahmat Ali Khan, Yongjin Li, Fahd Jarad. Exact analytical solutions of fractional order telegraph equations via triple Laplace transform. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2387-2397. doi: 10.3934/dcdss.2020427

[9]

Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems & Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645

[10]

Juan Sánchez, Marta Net, José M. Vega. Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1357-1380. doi: 10.3934/dcdsb.2006.6.1357

[11]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems & Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

[12]

Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 455-483. doi: 10.3934/dcdsb.2008.10.455

[13]

Lu Zhao, Heping Dong, Fuming Ma. Inverse obstacle scattering for acoustic waves in the time domain. Inverse Problems & Imaging, 2021, 15 (5) : 1269-1286. doi: 10.3934/ipi.2021037

[14]

Jacek Banasiak, Adam Błoch. Telegraph systems on networks and port-Hamiltonians. I. Boundary conditions and well-posedness. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021046

[15]

Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389

[16]

Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations & Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072

[17]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems & Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[18]

Feng-Bin Wang, Junping Shi, Xingfu Zou. Dynamics of a host-pathogen system on a bounded spatial domain. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2535-2560. doi: 10.3934/cpaa.2015.14.2535

[19]

Lu Zhao, Heping Dong, Fuming Ma. Time-domain analysis of forward obstacle scattering for elastic wave. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4111-4130. doi: 10.3934/dcdsb.2020276

[20]

Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete & Continuous Dynamical Systems, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995

2020 Impact Factor: 1.081

Article outline

Figures and Tables

[Back to Top]