
-
Previous Article
Stability and stabilization for the three-dimensional Navier-Stokes-Voigt equations with unbounded variable delay
- EECT Home
- This Issue
-
Next Article
Optimal distributed control of the three dimensional primitive equations of large-scale ocean and atmosphere dynamics
Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains
University of Wuppertal, School of Mathematics and Natural Science, Gaußstraße 20, D-42119 Wuppertal, Germany |
We consider a port-Hamiltonian system on an open spatial domain $ \Omega \subseteq \mathbb{R}^n $ with bounded Lipschitz boundary. We show that there is a boundary triple associated to this system. Hence, we can characterize all boundary conditions that provide unique solutions that are non-increasing in the Hamiltonian. As a by-product we develop the theory of quasi Gelfand triples. Adding "natural" boundary controls and boundary observations yields scattering/impedance passive boundary control systems. This framework will be applied to the wave equation, Maxwell's equations and Mindlin plate model. Probably, there are even more applications.
References:
[1] |
J. Behrndt and M. Langer,
Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal., 243 (2007), 536-565.
doi: 10.1016/j.jfa.2006.10.009. |
[2] |
A. Brugnoli, D. Alazard, V. Pommier-Budinger and D. Matignon,
Port-Hamiltonian formulation and symplectic discretization of plate models. Part Ⅰ: Mindlin model for thick plates, Appl. Math. Model., 75 (2019), 940-960.
doi: 10.1016/j.apm.2019.04.035. |
[3] |
L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002. |
[4] |
R. Cross, Multivalued Linear Operators, volume 213 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998. |
[5] |
R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990. |
[6] |
V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, volume 48 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991.
doi: 10.1007/978-94-011-3714-0. |
[7] |
L. Hörmander, The Analysis of Linear Partial Differential Operators I, Classics in Mathematics, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-61497-2. |
[8] |
B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, volume 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012.
doi: 10.1007/978-3-0348-0399-1. |
[9] |
M. Kurula and H. Zwart,
Linear wave systems on $n$-D spatial domains, Internat. J. Control, 88 (2015), 1063-1077.
doi: 10.1080/00207179.2014.993337. |
[10] |
A. Macchelli, C. Melchiorri and L. Bassi, Port-based modelling and control of the Mindlin plate, in Decision and Control, 2005 and 2005 European Control Conference, IEEE, (2005), 5989-5994.
doi: 10.1109/CDC.2005.1583120. |
[11] |
J. Malinen and O. J. Staffans,
Conservative boundary control systems, J. Differential Equations, 231 (2006), 290-312.
doi: 10.1016/j.jde.2006.05.012. |
[12] |
J. Malinen and O. J. Staffans,
Impedance passive and conservative boundary control systems, Complex Anal. Oper. Theory, 1 (2007), 279-300.
doi: 10.1007/s11785-006-0009-3. |
[13] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[14] |
A. van der Schaft and D. Jeltsema,
Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control, 1 (2014), 173-378.
|
[15] |
J. A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D thesis, University of Twente, Netherlands, 2007. |
[16] |
G. Weiss and O. J. Staffans,
Maxwell's equations as a scattering passive linear system, SIAM J. Control Optim., 51 (2013), 3722-3756.
doi: 10.1137/120869444. |
[17] |
K. Yosida, Functional Analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, sixth edition, 1980. |
show all references
References:
[1] |
J. Behrndt and M. Langer,
Boundary value problems for elliptic partial differential operators on bounded domains, J. Funct. Anal., 243 (2007), 536-565.
doi: 10.1016/j.jfa.2006.10.009. |
[2] |
A. Brugnoli, D. Alazard, V. Pommier-Budinger and D. Matignon,
Port-Hamiltonian formulation and symplectic discretization of plate models. Part Ⅰ: Mindlin model for thick plates, Appl. Math. Model., 75 (2019), 940-960.
doi: 10.1016/j.apm.2019.04.035. |
[3] |
L. Carbone and R. De Arcangelis, Unbounded Functionals in the Calculus of Variations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2002. |
[4] |
R. Cross, Multivalued Linear Operators, volume 213 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1998. |
[5] |
R. Dautray and J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 3, Springer-Verlag, Berlin, 1990. |
[6] |
V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, volume 48 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1991.
doi: 10.1007/978-94-011-3714-0. |
[7] |
L. Hörmander, The Analysis of Linear Partial Differential Operators I, Classics in Mathematics, Springer-Verlag, Berlin, 2003.
doi: 10.1007/978-3-642-61497-2. |
[8] |
B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, volume 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012.
doi: 10.1007/978-3-0348-0399-1. |
[9] |
M. Kurula and H. Zwart,
Linear wave systems on $n$-D spatial domains, Internat. J. Control, 88 (2015), 1063-1077.
doi: 10.1080/00207179.2014.993337. |
[10] |
A. Macchelli, C. Melchiorri and L. Bassi, Port-based modelling and control of the Mindlin plate, in Decision and Control, 2005 and 2005 European Control Conference, IEEE, (2005), 5989-5994.
doi: 10.1109/CDC.2005.1583120. |
[11] |
J. Malinen and O. J. Staffans,
Conservative boundary control systems, J. Differential Equations, 231 (2006), 290-312.
doi: 10.1016/j.jde.2006.05.012. |
[12] |
J. Malinen and O. J. Staffans,
Impedance passive and conservative boundary control systems, Complex Anal. Oper. Theory, 1 (2007), 279-300.
doi: 10.1007/s11785-006-0009-3. |
[13] |
M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkhäuser Advanced Texts: Basler Lehrbücher, [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 2009.
doi: 10.1007/978-3-7643-8994-9. |
[14] |
A. van der Schaft and D. Jeltsema,
Port-Hamiltonian systems theory: An introductory overview, Found. Trends Syst. Control, 1 (2014), 173-378.
|
[15] |
J. A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter Systems, Ph.D thesis, University of Twente, Netherlands, 2007. |
[16] |
G. Weiss and O. J. Staffans,
Maxwell's equations as a scattering passive linear system, SIAM J. Control Optim., 51 (2013), 3722-3756.
doi: 10.1137/120869444. |
[17] |
K. Yosida, Functional Analysis, volume 123 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin-New York, sixth edition, 1980. |

[1] |
Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations and Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207 |
[2] |
Jochen Schmid. Stabilization of port-Hamiltonian systems with discontinuous energy densities. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2021063 |
[3] |
Jordi-Lluís Figueras, Àlex Haro. Triple collisions of invariant bundles. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2069-2082. doi: 10.3934/dcdsb.2013.18.2069 |
[4] |
Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014 |
[5] |
Thanyarat JItpeera, Tamaki Tanaka, Poom Kumam. Triple-hierarchical problems with variational inequality. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021038 |
[6] |
Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042 |
[7] |
Yazheng Dang, Marcus Ang, Jie Sun. An inertial triple-projection algorithm for solving the split feasibility problem. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022019 |
[8] |
Fatima Zohra Hathout, Tarik Mohammed Touaoula, Salih Djilali. Mathematical analysis of a triple age dependent epidemiological model with including a protection strategy. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022048 |
[9] |
Ruijing Liu, Junling Zhou. Optimal data placements for triple replication in distributed storage systems. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022037 |
[10] |
Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control and Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1 |
[11] |
Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007 |
[12] |
Rahmat Ali Khan, Yongjin Li, Fahd Jarad. Exact analytical solutions of fractional order telegraph equations via triple Laplace transform. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2387-2397. doi: 10.3934/dcdss.2020427 |
[13] |
Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems and Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645 |
[14] |
Juan Sánchez, Marta Net, José M. Vega. Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1357-1380. doi: 10.3934/dcdsb.2006.6.1357 |
[15] |
Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems and Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008 |
[16] |
Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 455-483. doi: 10.3934/dcdsb.2008.10.455 |
[17] |
Lu Zhao, Heping Dong, Fuming Ma. Inverse obstacle scattering for acoustic waves in the time domain. Inverse Problems and Imaging, 2021, 15 (5) : 1269-1286. doi: 10.3934/ipi.2021037 |
[18] |
Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389 |
[19] |
Jacek Banasiak, Adam Błoch. Telegraph systems on networks and port-Hamiltonians. I. Boundary conditions and well-posedness. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021046 |
[20] |
Birgit Jacob, Hafida Laasri. Well-posedness of infinite-dimensional non-autonomous passive boundary control systems. Evolution Equations and Control Theory, 2021, 10 (2) : 385-409. doi: 10.3934/eect.2020072 |
2021 Impact Factor: 1.169
Tools
Article outline
Figures and Tables
[Back to Top]