doi: 10.3934/eect.2020100
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations

Department of Applied Mathematics, Imecc-State University of Campinas, 13083-859, Campinas, SP, Brazil

* Corresponding author: vanterler@ime.unicamp.br

Received  May 2019 Revised  August 2020 Early access October 2020

We discuss the existence and uniqueness of mild solutions for a class of quasi-linear fractional integro-differential equations with impulsive conditions via Hausdorff measures of noncompactness and fixed point theory in Banach space. Mild solution controllability is discussed for two particular cases.

Citation: Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations & Control Theory, doi: 10.3934/eect.2020100
References:
[1]

R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.  doi: 10.1016/j.cnsns.2016.09.006.  Google Scholar

[2]

R. AlmeidaA. M. C. Brito da CruzN. Martins and M. T. T. Monteiro, An epidemiological MSEIR model described by the Caputo fractional derivative, Inter. J. Dyn. Control, 7 (2019), 776-784.  doi: 10.1007/s40435-018-0492-1.  Google Scholar

[3]

R. Almeida, A. B. Malinowska and Tatiana Odzijewicz, On systems of fractional differential equations with the $\psi$-Caputo derivative and their applications, Math. Meth. Appl. Sci., (2019), 1-16. Google Scholar

[4]

J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measure of Nonompactness in Metric Fixed Point Theorem, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8920-9.  Google Scholar

[5]

D. BahugunaR. Sakthivel and A. Chadha, Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay, Stochc. Anal. Appl., 35 (2017), 63-88.  doi: 10.1080/07362994.2016.1249285.  Google Scholar

[6]

J. Banaś and K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Marcle Dekker, New York, 1980.  Google Scholar

[7]

J. Banaś and W. G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl., 167 (1992), 133-151.  doi: 10.1016/0022-247X(92)90241-5.  Google Scholar

[8]

M. Benchohra, S. Litimein and J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, J. Fixed Point Theory Appl., 21 (2019), Paper No. 21, 16 pp. doi: 10.1007/s11784-019-0660-8.  Google Scholar

[9]

A. Boudjerida, D. Seba and G. M. N'Guérékata, Controllability of coupled systems for impulsive $\varphi$-Hilfer fractional integro-differential inclusions., Applicable Anal., (2020), 1-18. Google Scholar

[10]

D. Bothe, Multivalued perturbation of $m$-accretive differential inclusions, Israel J. Math., 108 (1998), 109-138.  doi: 10.1007/BF02783044.  Google Scholar

[11]

L. Byszewski and V. Lakshmikantham, Theorems about the existence and uniqueness of solutions of a nonlocal Cauchy problem in Banach spaces, Applicable Anal., 40 (1990), 11-19.  doi: 10.1080/00036819008839989.  Google Scholar

[12]

D. N. Chalishajar, K. Malar and R. Ilavarasi, Existence and controllability results of impulsive fractional neutral integro-differential equation with sectorial operator and infinite delay, AIP Conference Proceedings, AIP Publishing LLC, 2159 (2019), 030006. doi: 10.1063/1.5127471.  Google Scholar

[13]

J. Dabas and A. Chauhan, Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay, Math. Computer Model., 57 (2013), 754-763.  doi: 10.1016/j.mcm.2012.09.001.  Google Scholar

[14]

A. Debbouche, Fractional evolution integro-differential systems with nonlocal conditions, Adv. Dyn. Syst. Appl., 5 (2010), 49-60.   Google Scholar

[15]

A. Debbouche and D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., 62 (2011), 1442-1450.  doi: 10.1016/j.camwa.2011.03.075.  Google Scholar

[16]

K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229-248.  doi: 10.1006/jmaa.2000.7194.  Google Scholar

[17]

R. Dhayal, M. Malik, S. Abbas, A. Kumar and R. Sakthivel, Approximation theorems for controllability problem governed by fractional differential equation, Evolution Equ. Control Theory, (2019). doi: 10.3934/eect.2020073.  Google Scholar

[18]

G. Emmanuele, Measures of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 25 (1981), 353-358.   Google Scholar

[19]

Z. Fan and G. Li, Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 258 (2010), 1709-1727.  doi: 10.1016/j.jfa.2009.10.023.  Google Scholar

[20]

H. Gou and B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204-214.  doi: 10.1016/j.cnsns.2016.05.021.  Google Scholar

[21]

E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[22]

L. HuY. Ren and R. Sakthivel, Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays, Semigroup Forum, 79 (2009), 507-514.  doi: 10.1007/s00233-009-9164-y.  Google Scholar

[23]

S. Ji and G. Li, Existence results for impulsive differential inclusions with nonlocal conditions, Comput. Math. Appl., 62 (2011), 1908-1915.  doi: 10.1016/j.camwa.2011.06.034.  Google Scholar

[24]

R. Joice NirmalaK. Balachandran and J. J. Trujillo, Null controllability of fractional dynamical systems with constrained control, Frac. Calc. Appl. Anal., 20 (2017), 553-565.  doi: 10.1515/fca-2017-0029.  Google Scholar

[25]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland, New York, 2006.  Google Scholar

[26]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Meth. Appl., 69 (2008), 2677-2682.  doi: 10.1016/j.na.2007.08.042.  Google Scholar

[27]

Z. LiuJ. Lv and R. Sakthivel, Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces, IMA J. Math. Control Infor., 31 (2014), 363-383.  doi: 10.1093/imamci/dnt015.  Google Scholar

[28]

M. Mallika ArjunanV. Kavitha and S. Selvi, Existence results for impulsive differential equations with nonlocal conditions via measures of noncompactness, J. Nonlinear Sci. Appl., 5 (2012), 195-205.  doi: 10.22436/jnsa.005.03.04.  Google Scholar

[29]

B. P. MoghaddamJ. A. Tenreiro Machado and M. L. Morgado, Numerical approach for a class of distributed order time fractional partial differential equations, Appl. Numer. Math., 136 (2019), 152-162.  doi: 10.1016/j.apnum.2018.09.019.  Google Scholar

[30]

G. M. Mophou and G. M. N'Guérékata, Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79 (2009), 315-322.  doi: 10.1007/s00233-008-9117-x.  Google Scholar

[31]

S. Nemati, P. M. Lima and D. F. M. Torres, A numerical approach for solving fractional optimal control problems using modified hat functions, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104849, 14pp. doi: 10.1016/j.cnsns.2019.104849.  Google Scholar

[32]

S. K. Ntouyas and P. Ch. Tsamatos, Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl., 210 (1997), 679-687.  doi: 10.1006/jmaa.1997.5425.  Google Scholar

[33]

M. D. OrtigueiraD. Valério and J. T. Machado, Variable order fractional systems, Commun. Nonlinear Sci. Numer. Simul., 71 (2019), 231-243.  doi: 10.1016/j.cnsns.2018.12.003.  Google Scholar

[34]

R. Ponce, Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, 87 (2013), 377-392.  doi: 10.1007/s00233-013-9474-y.  Google Scholar

[35]

R. SakthivelN. I. Mahmudov and J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334-10340.  doi: 10.1016/j.amc.2012.03.093.  Google Scholar

[36]

F. P. Samuel and K. Balachandran, Existence of solutions for quasi-linear impulsive functional integrodifferential equations in Banach spaces, J. Nonlinear Sci. Appl., 7 (2014), 115-125.  doi: 10.22436/jnsa.007.02.05.  Google Scholar

[37]

G. ShenR. SakthivelY. Ren and M. Li, Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process, Collectanea Math., 71 (2020), 63-82.  doi: 10.1007/s13348-019-00248-3.  Google Scholar

[38]

X.-B. Shu and Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465-476.  doi: 10.1016/j.amc.2015.10.020.  Google Scholar

[39]

G. Sales TeodoroJ. A Tenreiro Machado and E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195-208.  doi: 10.1016/j.jcp.2019.03.008.  Google Scholar

[40]

M. R. Sidi Ammi and D. F. M. Torres, Optimal control of a nonlocal thermistor problem with ABC fractional time derivatives, Comput. Math. Appl., 78 (2019), 1507-1516.  doi: 10.1016/j.camwa.2019.03.043.  Google Scholar

[41]

N. H. TuanE. NaneD. O'Regan and N. D. Phuong, Approximation of mild solutions of a semilinear fractional differential equation with random noise, Proc. Amer. Math. Soc., 148 (2020), 3339-3357.  doi: 10.1090/proc/15029.  Google Scholar

[42]

N. H. TuanA. Debbouche and T. B. Ngoc, Existence and regularity of final value problems for time fractional wave equations, Comput. Math. Appl., 78 (2019), 1396-1414.  doi: 10.1016/j.camwa.2018.11.036.  Google Scholar

[43]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91.  doi: 10.1016/j.cnsns.2018.01.005.  Google Scholar

[44]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50-56.  doi: 10.1016/j.aml.2018.01.016.  Google Scholar

[45]

J. Vanterler da C. SousaK. D. Kucche and E. Capelas de Oliveira, Stability of $\psi$-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73-80.  doi: 10.1016/j.aml.2018.08.013.  Google Scholar

[46]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\psi$-Hilfer operator, J. Fixed Point Theory Appl., 20 (2018), Paper No. 96, 21 pp. doi: 10.1007/s11784-018-0587-5.  Google Scholar

[47]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, Leibniz type rule: $\psi$-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 305-311.  doi: 10.1016/j.cnsns.2019.05.003.  Google Scholar

[48]

J. Vanterler da C. SousaM. N. N. dos SantosL. A. Magna and E. Capelas de Oliveira, Validation of a fractional model for erythrocyte sedimentation rate, Comput. Appl. Math., 37 (2018), 6903-6919.  doi: 10.1007/s40314-018-0717-0.  Google Scholar

[49]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\Psi$-fractional integral and applications, Comput. Appl. Math., 38 (2019), Paper No. 4, 22 pp. doi: 10.1007/s40314-019-0774-z.  Google Scholar

[50]

J. Vanterler da C. Sousa, E. Capelas de Oliveira and L. A. Magna, Fractional calculus and the ESR test, AIMS Math., 2 (2017), 692. Google Scholar

[51]

J. Vanterler da C. Sousa, D. S. Oliveira and E. Capelas de Oliveira, A note on the mild solutions of Hilfer impulsive fractional differential equations, arXiv: 1811.09256, (2018). Google Scholar

[52]

J. Vanterler da C. Sousa, D. Ferreira Gomes and E. Capelas de Oliveira, A new class of mild and strong solutions of integro-differential equation of arbitrary order in Banach space, arXiv: 1812.11197, (2018). Google Scholar

[53]

J. Vanterler da C. Sousa, Existence of mild solutions to Hilfer fractional evolution equations in Banach space, arXiv: 1812.02213, (2018). Google Scholar

[54]

J. WangW. Wei and Y. Yang, Fractional nonlocal integrodifferential equations of mixed type with time-varying generating operators and optimal control, Opuscula Math., 30 (2010), 217-234.  doi: 10.7494/OpMath.2010.30.2.217.  Google Scholar

[55]

X.-J. YangF. GaoJ. A. Tenreiro Machado and D. Baleanu, Exact travelling wave solutions for local fractional partial differential equations in mathematical physics, Math. Meth. Engineering. Nonlinear Sys. Compl., 24 (2019), 175-191.   Google Scholar

[56]

Y. Zhang, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.  Google Scholar

show all references

References:
[1]

R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.  doi: 10.1016/j.cnsns.2016.09.006.  Google Scholar

[2]

R. AlmeidaA. M. C. Brito da CruzN. Martins and M. T. T. Monteiro, An epidemiological MSEIR model described by the Caputo fractional derivative, Inter. J. Dyn. Control, 7 (2019), 776-784.  doi: 10.1007/s40435-018-0492-1.  Google Scholar

[3]

R. Almeida, A. B. Malinowska and Tatiana Odzijewicz, On systems of fractional differential equations with the $\psi$-Caputo derivative and their applications, Math. Meth. Appl. Sci., (2019), 1-16. Google Scholar

[4]

J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measure of Nonompactness in Metric Fixed Point Theorem, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8920-9.  Google Scholar

[5]

D. BahugunaR. Sakthivel and A. Chadha, Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay, Stochc. Anal. Appl., 35 (2017), 63-88.  doi: 10.1080/07362994.2016.1249285.  Google Scholar

[6]

J. Banaś and K. Goebel, Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics, Marcle Dekker, New York, 1980.  Google Scholar

[7]

J. Banaś and W. G. El-Sayed, Measures of noncompactness and solvability of an integral equation in the class of functions of locally bounded variation, J. Math. Anal. Appl., 167 (1992), 133-151.  doi: 10.1016/0022-247X(92)90241-5.  Google Scholar

[8]

M. Benchohra, S. Litimein and J. J. Nieto, Semilinear fractional differential equations with infinite delay and non-instantaneous impulses, J. Fixed Point Theory Appl., 21 (2019), Paper No. 21, 16 pp. doi: 10.1007/s11784-019-0660-8.  Google Scholar

[9]

A. Boudjerida, D. Seba and G. M. N'Guérékata, Controllability of coupled systems for impulsive $\varphi$-Hilfer fractional integro-differential inclusions., Applicable Anal., (2020), 1-18. Google Scholar

[10]

D. Bothe, Multivalued perturbation of $m$-accretive differential inclusions, Israel J. Math., 108 (1998), 109-138.  doi: 10.1007/BF02783044.  Google Scholar

[11]

L. Byszewski and V. Lakshmikantham, Theorems about the existence and uniqueness of solutions of a nonlocal Cauchy problem in Banach spaces, Applicable Anal., 40 (1990), 11-19.  doi: 10.1080/00036819008839989.  Google Scholar

[12]

D. N. Chalishajar, K. Malar and R. Ilavarasi, Existence and controllability results of impulsive fractional neutral integro-differential equation with sectorial operator and infinite delay, AIP Conference Proceedings, AIP Publishing LLC, 2159 (2019), 030006. doi: 10.1063/1.5127471.  Google Scholar

[13]

J. Dabas and A. Chauhan, Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay, Math. Computer Model., 57 (2013), 754-763.  doi: 10.1016/j.mcm.2012.09.001.  Google Scholar

[14]

A. Debbouche, Fractional evolution integro-differential systems with nonlocal conditions, Adv. Dyn. Syst. Appl., 5 (2010), 49-60.   Google Scholar

[15]

A. Debbouche and D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., 62 (2011), 1442-1450.  doi: 10.1016/j.camwa.2011.03.075.  Google Scholar

[16]

K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229-248.  doi: 10.1006/jmaa.2000.7194.  Google Scholar

[17]

R. Dhayal, M. Malik, S. Abbas, A. Kumar and R. Sakthivel, Approximation theorems for controllability problem governed by fractional differential equation, Evolution Equ. Control Theory, (2019). doi: 10.3934/eect.2020073.  Google Scholar

[18]

G. Emmanuele, Measures of weak noncompactness and fixed point theorems, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 25 (1981), 353-358.   Google Scholar

[19]

Z. Fan and G. Li, Existence results for semilinear differential equations with nonlocal and impulsive conditions, J. Funct. Anal., 258 (2010), 1709-1727.  doi: 10.1016/j.jfa.2009.10.023.  Google Scholar

[20]

H. Gou and B. Li, Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 204-214.  doi: 10.1016/j.cnsns.2016.05.021.  Google Scholar

[21]

E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[22]

L. HuY. Ren and R. Sakthivel, Existence and uniqueness of mild solutions for semilinear integro-differential equations of fractional order with nonlocal initial conditions and delays, Semigroup Forum, 79 (2009), 507-514.  doi: 10.1007/s00233-009-9164-y.  Google Scholar

[23]

S. Ji and G. Li, Existence results for impulsive differential inclusions with nonlocal conditions, Comput. Math. Appl., 62 (2011), 1908-1915.  doi: 10.1016/j.camwa.2011.06.034.  Google Scholar

[24]

R. Joice NirmalaK. Balachandran and J. J. Trujillo, Null controllability of fractional dynamical systems with constrained control, Frac. Calc. Appl. Anal., 20 (2017), 553-565.  doi: 10.1515/fca-2017-0029.  Google Scholar

[25]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland, New York, 2006.  Google Scholar

[26]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis: Theory, Meth. Appl., 69 (2008), 2677-2682.  doi: 10.1016/j.na.2007.08.042.  Google Scholar

[27]

Z. LiuJ. Lv and R. Sakthivel, Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces, IMA J. Math. Control Infor., 31 (2014), 363-383.  doi: 10.1093/imamci/dnt015.  Google Scholar

[28]

M. Mallika ArjunanV. Kavitha and S. Selvi, Existence results for impulsive differential equations with nonlocal conditions via measures of noncompactness, J. Nonlinear Sci. Appl., 5 (2012), 195-205.  doi: 10.22436/jnsa.005.03.04.  Google Scholar

[29]

B. P. MoghaddamJ. A. Tenreiro Machado and M. L. Morgado, Numerical approach for a class of distributed order time fractional partial differential equations, Appl. Numer. Math., 136 (2019), 152-162.  doi: 10.1016/j.apnum.2018.09.019.  Google Scholar

[30]

G. M. Mophou and G. M. N'Guérékata, Existence of the mild solution for some fractional differential equations with nonlocal conditions, Semigroup Forum, 79 (2009), 315-322.  doi: 10.1007/s00233-008-9117-x.  Google Scholar

[31]

S. Nemati, P. M. Lima and D. F. M. Torres, A numerical approach for solving fractional optimal control problems using modified hat functions, Commun. Nonlinear Sci. Numer. Simul., 78 (2019), 104849, 14pp. doi: 10.1016/j.cnsns.2019.104849.  Google Scholar

[32]

S. K. Ntouyas and P. Ch. Tsamatos, Global existence for semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl., 210 (1997), 679-687.  doi: 10.1006/jmaa.1997.5425.  Google Scholar

[33]

M. D. OrtigueiraD. Valério and J. T. Machado, Variable order fractional systems, Commun. Nonlinear Sci. Numer. Simul., 71 (2019), 231-243.  doi: 10.1016/j.cnsns.2018.12.003.  Google Scholar

[34]

R. Ponce, Bounded mild solutions to fractional integro-differential equations in Banach spaces, Semigroup Forum, 87 (2013), 377-392.  doi: 10.1007/s00233-013-9474-y.  Google Scholar

[35]

R. SakthivelN. I. Mahmudov and J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334-10340.  doi: 10.1016/j.amc.2012.03.093.  Google Scholar

[36]

F. P. Samuel and K. Balachandran, Existence of solutions for quasi-linear impulsive functional integrodifferential equations in Banach spaces, J. Nonlinear Sci. Appl., 7 (2014), 115-125.  doi: 10.22436/jnsa.007.02.05.  Google Scholar

[37]

G. ShenR. SakthivelY. Ren and M. Li, Controllability and stability of fractional stochastic functional systems driven by Rosenblatt process, Collectanea Math., 71 (2020), 63-82.  doi: 10.1007/s13348-019-00248-3.  Google Scholar

[38]

X.-B. Shu and Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465-476.  doi: 10.1016/j.amc.2015.10.020.  Google Scholar

[39]

G. Sales TeodoroJ. A Tenreiro Machado and E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195-208.  doi: 10.1016/j.jcp.2019.03.008.  Google Scholar

[40]

M. R. Sidi Ammi and D. F. M. Torres, Optimal control of a nonlocal thermistor problem with ABC fractional time derivatives, Comput. Math. Appl., 78 (2019), 1507-1516.  doi: 10.1016/j.camwa.2019.03.043.  Google Scholar

[41]

N. H. TuanE. NaneD. O'Regan and N. D. Phuong, Approximation of mild solutions of a semilinear fractional differential equation with random noise, Proc. Amer. Math. Soc., 148 (2020), 3339-3357.  doi: 10.1090/proc/15029.  Google Scholar

[42]

N. H. TuanA. Debbouche and T. B. Ngoc, Existence and regularity of final value problems for time fractional wave equations, Comput. Math. Appl., 78 (2019), 1396-1414.  doi: 10.1016/j.camwa.2018.11.036.  Google Scholar

[43]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72-91.  doi: 10.1016/j.cnsns.2018.01.005.  Google Scholar

[44]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50-56.  doi: 10.1016/j.aml.2018.01.016.  Google Scholar

[45]

J. Vanterler da C. SousaK. D. Kucche and E. Capelas de Oliveira, Stability of $\psi$-Hilfer impulsive fractional differential equations, Appl. Math. Lett., 88 (2019), 73-80.  doi: 10.1016/j.aml.2018.08.013.  Google Scholar

[46]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the $\psi$-Hilfer operator, J. Fixed Point Theory Appl., 20 (2018), Paper No. 96, 21 pp. doi: 10.1007/s11784-018-0587-5.  Google Scholar

[47]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, Leibniz type rule: $\psi$-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 77 (2019), 305-311.  doi: 10.1016/j.cnsns.2019.05.003.  Google Scholar

[48]

J. Vanterler da C. SousaM. N. N. dos SantosL. A. Magna and E. Capelas de Oliveira, Validation of a fractional model for erythrocyte sedimentation rate, Comput. Appl. Math., 37 (2018), 6903-6919.  doi: 10.1007/s40314-018-0717-0.  Google Scholar

[49]

J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the $\Psi$-fractional integral and applications, Comput. Appl. Math., 38 (2019), Paper No. 4, 22 pp. doi: 10.1007/s40314-019-0774-z.  Google Scholar

[50]

J. Vanterler da C. Sousa, E. Capelas de Oliveira and L. A. Magna, Fractional calculus and the ESR test, AIMS Math., 2 (2017), 692. Google Scholar

[51]

J. Vanterler da C. Sousa, D. S. Oliveira and E. Capelas de Oliveira, A note on the mild solutions of Hilfer impulsive fractional differential equations, arXiv: 1811.09256, (2018). Google Scholar

[52]

J. Vanterler da C. Sousa, D. Ferreira Gomes and E. Capelas de Oliveira, A new class of mild and strong solutions of integro-differential equation of arbitrary order in Banach space, arXiv: 1812.11197, (2018). Google Scholar

[53]

J. Vanterler da C. Sousa, Existence of mild solutions to Hilfer fractional evolution equations in Banach space, arXiv: 1812.02213, (2018). Google Scholar

[54]

J. WangW. Wei and Y. Yang, Fractional nonlocal integrodifferential equations of mixed type with time-varying generating operators and optimal control, Opuscula Math., 30 (2010), 217-234.  doi: 10.7494/OpMath.2010.30.2.217.  Google Scholar

[55]

X.-J. YangF. GaoJ. A. Tenreiro Machado and D. Baleanu, Exact travelling wave solutions for local fractional partial differential equations in mathematical physics, Math. Meth. Engineering. Nonlinear Sys. Compl., 24 (2019), 175-191.   Google Scholar

[56]

Y. Zhang, J. Wang and L. Zhang, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.  Google Scholar

[1]

Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053

[2]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[3]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[4]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3351-3386. doi: 10.3934/dcdss.2020440

[6]

Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control & Related Fields, 2021, 11 (4) : 715-737. doi: 10.3934/mcrf.2020044

[7]

Hermann Brunner. The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Communications on Pure & Applied Analysis, 2006, 5 (2) : 261-276. doi: 10.3934/cpaa.2006.5.261

[8]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[9]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021051

[10]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

[11]

Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064

[12]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[13]

Xinjie Dai, Aiguo Xiao, Weiping Bu. Stochastic fractional integro-differential equations with weakly singular kernels: Well-posedness and Euler–Maruyama approximation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021225

[14]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[15]

Qi Yao, Linshan Wang, Yangfan Wang. Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4727-4743. doi: 10.3934/dcdsb.2020310

[16]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[17]

Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053

[18]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[19]

Martin Bohner, Osman Tunç. Qualitative analysis of integro-differential equations with variable retardation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021059

[20]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (349)
  • HTML views (474)
  • Cited by (0)

[Back to Top]