• Previous Article
    Sufficient conditions for the continuity of inertial manifolds for singularly perturbed problems
  • EECT Home
  • This Issue
  • Next Article
    On a class of differential quasi-variational-hemivariational inequalities in infinite-dimensional Banach spaces
doi: 10.3934/eect.2020101
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Lifespan of solutions to a damped plate equation with logarithmic nonlinearity

School of Mathematics, Jilin University, Changchun, 130012, China

* Corresponding author: Yuzhu Han

Received  May 2020 Revised  August 2020 Early access October 2020

Fund Project: Supported by NSFC (11401252) and by Scientific Research Project of The Education Department of Jilin Province (JJKH20190018KJ)

This paper is devoted to the lifespan of solutions to a damped plate equation with logarithmic nonlinearity
$ u_{tt}+\Delta^2u-\Delta u-\Delta u_t+u_t = |u|^{p-2}u\ln|u|. $
Finite time blow-up criteria for solutions at both lower and high initial energy levels are established and an upper bound for the blow-up time is given for each case. Moreover, by constructing a new auxiliary functional and making full use of the strong damping term, a lower bound for the blow-up time is also derived.
Citation: Yuzhu Han, Qi Li. Lifespan of solutions to a damped plate equation with logarithmic nonlinearity. Evolution Equations & Control Theory, doi: 10.3934/eect.2020101
References:
[1]

M. M. Al-Gharabli and S. A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18 (2018), 105-125.  doi: 10.1007/s00028-017-0392-4.  Google Scholar

[2]

L. J. An, Loss of hyperbolicity in elastic-plastic material at finite strains, SIAM J. Appl. Math., 53 (1993), 621-654.  doi: 10.1137/0153032.  Google Scholar

[3]

L. J. An and A. Peirce, The effect of microstructure on elastic-plastic models, SIAM J. Appl. Math., 54 (1994), 708-730.  doi: 10.1137/S0036139992238498.  Google Scholar

[4]

L. J. An and A. Peirce, A weakly nonlinear analysis of elasto-plastic-microstructure models, SIAM J. Appl. Math., 55 (1995), 136-155.  doi: 10.1137/S0036139993255327.  Google Scholar

[5]

Y. Cao and C. Liu, Initial boundary value problem for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, Electronic J. Differ. Equations, 116 (2018), 1-19.   Google Scholar

[6]

H. ChenP. Luo and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[7]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[8]

H. Di, Y. Shang and Z. Song, Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity, Nonl. Anal. RWA., 51 (2020), 102968, 22pp. doi: 10.1016/j.nonrwa.2019.102968.  Google Scholar

[9]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations,, Ann I H Poincaŕe-AN., 23 (2006), 185–207. doi: 10.1016/j.anihpc.2005.02.007.  Google Scholar

[10]

B. Guo and X. Li, Bounds for the lifespan of solutions to fourth-order hyperbolic equations with initial data at arbitrary energy level, Taiwanese J. Math., 23 (2019), 1461-1477.  doi: 10.11650/tjm/190103.  Google Scholar

[11]

Y. Han, Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 474 (2019), 513-517.  doi: 10.1016/j.jmaa.2019.01.059.  Google Scholar

[12]

Y. HanC. Cao and P. Sun, A $p$-Laplace equation with logarithmic nonlinearity at high initial energy level, Acta Appl. Math., 164 (2019), 155-164.  doi: 10.1007/s10440-018-00230-4.  Google Scholar

[13]

Y. HanW. GaoZ. Sun and H. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.  Google Scholar

[14]

S. JiJ. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equations, 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[15]

C. N. Le and X. T. Le, Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., 151 (2017), 149-169.  doi: 10.1007/s10440-017-0106-5.  Google Scholar

[16]

C. N. Le and X. T. Le, Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73 (2017), 2076-2091.   Google Scholar

[17]

H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equation of the form $Pu_t=-Au+\mathcal{F}u$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.  Google Scholar

[18]

F. Li and F. Liu, Blow-up of solutions to a quasilinear wave equarion for high initial energy, Comptes Rendus Mecanique, 346 (2018), 402-407.   Google Scholar

[19]

W. LianM. S. Ahmed and R. Xu, Global existence and blow up of solutions for semilinear hyperbolic equation with logarithmic nonlinearity, Nonl. Anal., 184 (2019), 239-257.  doi: 10.1016/j.na.2019.02.015.  Google Scholar

[20]

Q. LinY. H. Wu and S. Lai, On global solution of an initial boundary value problem for a class of damped nonlinear equations, Nonl. Anal., 69 (2008), 4340-4351.  doi: 10.1016/j.na.2007.10.057.  Google Scholar

[21]

Y. Liu and R. Xu, A Class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differ. Equations, 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[22]

L. Ma and Z. B. Fang, Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source, Math. Methods Appl. Sci., 41 (2018), 2639-2653.  doi: 10.1002/mma.4766.  Google Scholar

[23]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[24]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[25]

S.-T. Wu, Lower and upper bounds for the blow-Up time of a class of damped fourth-order nonlinear evolution equations, J. Dyn. Control Syst., 24 (2018), 287-295.  doi: 10.1007/s10883-017-9366-7.  Google Scholar

show all references

References:
[1]

M. M. Al-Gharabli and S. A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18 (2018), 105-125.  doi: 10.1007/s00028-017-0392-4.  Google Scholar

[2]

L. J. An, Loss of hyperbolicity in elastic-plastic material at finite strains, SIAM J. Appl. Math., 53 (1993), 621-654.  doi: 10.1137/0153032.  Google Scholar

[3]

L. J. An and A. Peirce, The effect of microstructure on elastic-plastic models, SIAM J. Appl. Math., 54 (1994), 708-730.  doi: 10.1137/S0036139992238498.  Google Scholar

[4]

L. J. An and A. Peirce, A weakly nonlinear analysis of elasto-plastic-microstructure models, SIAM J. Appl. Math., 55 (1995), 136-155.  doi: 10.1137/S0036139993255327.  Google Scholar

[5]

Y. Cao and C. Liu, Initial boundary value problem for a mixed pseudo-parabolic $p$-Laplacian type equation with logarithmic nonlinearity, Electronic J. Differ. Equations, 116 (2018), 1-19.   Google Scholar

[6]

H. ChenP. Luo and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[7]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[8]

H. Di, Y. Shang and Z. Song, Initial boundary value problem for a class of strongly damped semilinear wave equations with logarithmic nonlinearity, Nonl. Anal. RWA., 51 (2020), 102968, 22pp. doi: 10.1016/j.nonrwa.2019.102968.  Google Scholar

[9]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations,, Ann I H Poincaŕe-AN., 23 (2006), 185–207. doi: 10.1016/j.anihpc.2005.02.007.  Google Scholar

[10]

B. Guo and X. Li, Bounds for the lifespan of solutions to fourth-order hyperbolic equations with initial data at arbitrary energy level, Taiwanese J. Math., 23 (2019), 1461-1477.  doi: 10.11650/tjm/190103.  Google Scholar

[11]

Y. Han, Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 474 (2019), 513-517.  doi: 10.1016/j.jmaa.2019.01.059.  Google Scholar

[12]

Y. HanC. Cao and P. Sun, A $p$-Laplace equation with logarithmic nonlinearity at high initial energy level, Acta Appl. Math., 164 (2019), 155-164.  doi: 10.1007/s10440-018-00230-4.  Google Scholar

[13]

Y. HanW. GaoZ. Sun and H. Li, Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy, Comput. Math. Appl., 76 (2018), 2477-2483.  doi: 10.1016/j.camwa.2018.08.043.  Google Scholar

[14]

S. JiJ. Yin and Y. Cao, Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differ. Equations, 261 (2016), 5446-5464.  doi: 10.1016/j.jde.2016.08.017.  Google Scholar

[15]

C. N. Le and X. T. Le, Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity, Acta Appl. Math., 151 (2017), 149-169.  doi: 10.1007/s10440-017-0106-5.  Google Scholar

[16]

C. N. Le and X. T. Le, Global solution and blow-up for a class of pseudo p-Laplacian evolution equations with logarithmic nonlinearity, Comput. Math. Appl., 73 (2017), 2076-2091.   Google Scholar

[17]

H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equation of the form $Pu_t=-Au+\mathcal{F}u$, Arch. Ration. Mech. Anal., 51 (1973), 371-386.  doi: 10.1007/BF00263041.  Google Scholar

[18]

F. Li and F. Liu, Blow-up of solutions to a quasilinear wave equarion for high initial energy, Comptes Rendus Mecanique, 346 (2018), 402-407.   Google Scholar

[19]

W. LianM. S. Ahmed and R. Xu, Global existence and blow up of solutions for semilinear hyperbolic equation with logarithmic nonlinearity, Nonl. Anal., 184 (2019), 239-257.  doi: 10.1016/j.na.2019.02.015.  Google Scholar

[20]

Q. LinY. H. Wu and S. Lai, On global solution of an initial boundary value problem for a class of damped nonlinear equations, Nonl. Anal., 69 (2008), 4340-4351.  doi: 10.1016/j.na.2007.10.057.  Google Scholar

[21]

Y. Liu and R. Xu, A Class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differ. Equations, 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[22]

L. Ma and Z. B. Fang, Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source, Math. Methods Appl. Sci., 41 (2018), 2639-2653.  doi: 10.1002/mma.4766.  Google Scholar

[23]

L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273-303.  doi: 10.1007/BF02761595.  Google Scholar

[24]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172.  doi: 10.1007/BF00250942.  Google Scholar

[25]

S.-T. Wu, Lower and upper bounds for the blow-Up time of a class of damped fourth-order nonlinear evolution equations, J. Dyn. Control Syst., 24 (2018), 287-295.  doi: 10.1007/s10883-017-9366-7.  Google Scholar

[1]

Ge Zu, Bin Guo. Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy. Evolution Equations & Control Theory, 2021, 10 (2) : 259-270. doi: 10.3934/eect.2020065

[2]

Menglan Liao. The lifespan of solutions for a viscoelastic wave equation with a strong damping and logarithmic nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021025

[3]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[4]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[5]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[6]

Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032

[7]

Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020088

[8]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[9]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (4) : 1601-1631. doi: 10.3934/cpaa.2021034

[10]

Ryo Ikehata, Marina Soga. Asymptotic profiles for a strongly damped plate equation with lower order perturbation. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1759-1780. doi: 10.3934/cpaa.2015.14.1759

[11]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[12]

Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151

[13]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[14]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[15]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[16]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[17]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

[18]

Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265

[19]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[20]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (191)
  • HTML views (409)
  • Cited by (0)

Other articles
by authors

[Back to Top]