• Previous Article
    Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative
  • EECT Home
  • This Issue
  • Next Article
    Solvability in abstract evolution equations with countable time delays in Banach spaces: Global Lipschitz perturbation
doi: 10.3934/eect.2020104

Complete controllability for a class of fractional evolution equations with uncertainty

1. 

Faculty of Natural Science, Hanoi Metropolitan University, Hanoi, Vietnam

2. 

Department of Mathematics, Hanoi Pedagogical University 2, Hanoi, Vietnam

3. 

Vietnam National University, Hanoi, Vietnam

4. 

Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran

5. 

Faculty of Information Technology, People's Police University of Technology and Logistics, Bac Ninh, Vietnam

* Corresponding author: Hoang Viet Long

Received  May 2019 Revised  August 2020 Published  December 2020

Fund Project: This work is supported by NAFOSTED - Vietnam under grant contract 101.02-2018.311

In this paper, we study the complete controllability for a class of fractional evolution equations with a common type of fuzzy uncertainty. By using Hausdorff measure of noncompactness and Krasnoselskii's fixed point theorem in complete semilinear metric space, we give some sufficient conditions of the controllability for the fuzzy fractional evolution equations without involving the compactness of strongly continuous semigroup and the perturbation function. In addition, the controllable problem is considered in a subspace of fuzzy numbers in which the gH-differences always exist, that guarantees the satisfaction of hypotheses of the problem. An application example related to electrical circuit is given to illustrate the effectiveness of theoretical results.

Citation: Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, doi: 10.3934/eect.2020104
References:
[1]

R. P. AgarwalD. BaleanuJ. J. NietoD. F. M. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3-29.  doi: 10.1016/j.cam.2017.09.039.  Google Scholar

[2]

R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, Operator Theory: Advances and Applications, vol. 55, Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0348-5727-7.  Google Scholar

[3]

T. Allahviranloo and M. B. Ahmadi, Fuzzy Laplace transforms, Soft Comput., 14 (2010), Art. no. 235. doi: 10.1007/s00500-008-0397-6.  Google Scholar

[4]

C. T. Anh and T. D. Ke, On nonlocal problems for retarded fractional differential equations in Banach spaces, Fixed Point Theory, 15 (2014), 373-392.   Google Scholar

[5]

G. Arthi and K. Balachandran, Controllability results for damped second-order impulsive neutral integro-differential systems with nonlocal conditions, J. Control Theory Appl., 11 (2013), 186-192.  doi: 10.1007/s11768-013-1084-4.  Google Scholar

[6]

P. Balasubramaniam, Controllability for the nonlinear fuzzy neutral functional differential equations, Far East J. Appl. Math., 9 (2002), 31-48.   Google Scholar

[7]

D. Baleanu, J. A. T. Machado and A. C. J. Luo, Fractional Dynamics and Control, Springer-Verlag, New York, 2012. doi: 10.1007/978-1-4614-0457-6.  Google Scholar

[8]

B. Bede, Mathematics of Fuzzy Sets and Fuzzy Logic, Studies in Fuzziness and Soft Computing, vol. 295, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-35221-8.  Google Scholar

[9]

B. Bede and S. G. Gal, Generalizations of the differential of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005), 581-599.  doi: 10.1016/j.fss.2004.08.001.  Google Scholar

[10]

B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141.  doi: 10.1016/j.fss.2012.10.003.  Google Scholar

[11]

A. ChaddhaS. N. Bora and R. Sakthivel, Approximate controllability of impulsive stochastic fractional differential equations with nonlocal conditions, Dyn. Syst. Appl., 27 (2018), 1-29.   Google Scholar

[12]

K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, vol. 2004, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[13]

T. DonchevA. Nosheen and V. Lupulescu, Fuzzy integro-differential equations with compactness type conditions, Hacet. J. Math. Stat., 43 (2014), 249-257.   Google Scholar

[14]

X. Fu, Controllability of abstract neutral functional differential systems with unbounded delay, Appl. Math. Comput., 151 (2004), 299-314.  doi: 10.1016/S0096-3003(03)00342-4.  Google Scholar

[15]

C. S. Gal and S. G. Gal, Semigroup of mappings on spaces of fuzzy-number-valued functions with applications to fuzzy differential equations, J. Fuzzy Math., 13 (2005), 647-682.   Google Scholar

[16]

R. GaneshR. Sakthivel and N. Mahmudov, Approximate controllability of fractional functional equations with infinite delay, Topol. Methods Nonlinear Anal., 43 (2014), 345-364.  doi: 10.12775/TMNA.2014.020.  Google Scholar

[17]

J. H. JeongJ. S. KimH. E. Youm and J. H. Park, Exact controllability for fuzzy differential equations using extremal solutions, J. Comput. Anal. Appl., 23 (2017), 1056-1069.   Google Scholar

[18]

S. JiG. Li and M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Appl. Math. Comput., 217 (2011), 6981-6989.  doi: 10.1016/j.amc.2011.01.107.  Google Scholar

[19]

O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems, 35 (1990), 389-396.  doi: 10.1016/0165-0114(90)90010-4.  Google Scholar

[20]

R. E. Kalman, Lectures on Controllability and Observability, Edizioni Cremonese, Rome, Italy, 1968.  Google Scholar

[21]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam, 2006.  Google Scholar

[22]

A. Khastan, A new representation for inverse fuzzy transform and its applications, Soft Comput., 21 (2017), 3503-3512.  doi: 10.1007/s00500-017-2555-1.  Google Scholar

[23]

A. Khastan, New solutions for first order linear fuzzy difference equations, J. Comput. Appl. Math., 312 (2017), 156-166.  doi: 10.1016/j.cam.2016.03.004.  Google Scholar

[24]

A. Khastan and R. Rodríguez-López, An existence and uniqueness result for fuzzy Goursat partial differential equation, Fuzzy Sets and Systems, 375 (2019), 141-160.  doi: 10.1016/j.fss.2019.02.011.  Google Scholar

[25]

Y. C. KwunJ. S. KimH. E. Youm and J. H. Park, Approximate controllability for fuzzy differential equations driven by Liu process, J. Comput. Anal. Appl., 15 (2013), 163-175.   Google Scholar

[26]

V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Series in Mathematical Analysis and Applications, Taylor & Francis Group, London, 2003. doi: 10.1201/9780203011386.  Google Scholar

[27]

J. Liang and H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Appl. Math. Comput., 254 (2015), 20-29.   Google Scholar

[28]

H. V. Long and N. P. Dong, An extension of Krasnoselskii's fixed point theorem and its application to nonlocal problems for implicit fractional differential systems with uncertainty, J. Fixed Point Theory Appl., 20 (2018), Paper no. 37, 27 pp. doi: 10.1007/s11784-018-0507-8.  Google Scholar

[29]

H. V. LongN. T. K. Son and H. T. T. Tam, The solvability of fuzzy partial differential equations under Caputo gH-differentiability, Fuzzy Sets and Systems, 309 (2017), 35-63.  doi: 10.1016/j.fss.2016.06.018.  Google Scholar

[30]

V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets and Systems, 265 (2015), 63-85.  doi: 10.1016/j.fss.2014.04.005.  Google Scholar

[31]

M. MuslimA. Kumar and R. Sakthivel, Exact and trajectory controllability of second-order systems with impulsive and and deviated arguments, Math. Methods Appl. Sci., 41 (2018), 4259-4272.  doi: 10.1002/mma.4888.  Google Scholar

[32]

S. Narayanamoorthy and S. Sowmiya, Approximate controllability result for nonlinear impulsive neutral fuzzy stochastic differential equations with nonlocal conditions, Adv. Difference Equ., 121 (2015), 16 pp. doi: 10.1186/s13662-015-0454-2.  Google Scholar

[33]

I. Podlubny, Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, vol. 198, Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[34]

R. SakthivelN. I. Mahmudov and J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334-10340.  doi: 10.1016/j.amc.2012.03.093.  Google Scholar

[35]

S. SalahshourT. Allahviranloo and S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1372-1381.  doi: 10.1016/j.cnsns.2011.07.005.  Google Scholar

[36]

S. Salahshour, T. Allahviranloo, S. Abbasbandy and D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty, Adv. Difference Equ., (2012), Art. no. 112, 12 pp. doi: 10.1186/1687-1847-2012-112.  Google Scholar

[37]

N. T. K. Son, A foundation on semigroup of operators defined on the set of triangular fuzzy numbers and its application to fuzzy fractional evolution equations, Fuzzy Sets and Systems, 347 (2018), 1-28.  doi: 10.1016/j.fss.2018.02.003.  Google Scholar

[38]

N. T. K. Son and N. P. Dong, Asymptotic behavior of $C^0$-solutions of evolution equations with uncertainties, J. Fixed Point Theory Appl., 20, (2018), Paper no. 153, 30 pp. doi: 10.1007/s11784-018-0633-3.  Google Scholar

[39]

L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71 (2009), 1311-1328.  doi: 10.1016/j.na.2008.12.005.  Google Scholar

[40]

L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161 (2010), 1564-1584.  doi: 10.1016/j.fss.2009.06.009.  Google Scholar

[41]

S. TomasielloS. K. Khattri and J. Awrejcewicz, Differential quadrature-based simulation of a class of fuzzy damped fractional dynamical systems, Int. J. Numer. Anal. Model., 14 (2017), 63-75.   Google Scholar

[42]

S. Tomasiello and J. E. Macias-Diaz, Note on a Picard-like method for Caputo fuzzy fractional differential equations, Appl. Math. Inf. Sci., 11 (2017), 281-287.  doi: 10.18576/amis/110134.  Google Scholar

[43]

J. R. Wang and Y. Zhou, Complete controllability of fractional evolution systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4346-4355.  doi: 10.1016/j.cnsns.2012.02.029.  Google Scholar

show all references

References:
[1]

R. P. AgarwalD. BaleanuJ. J. NietoD. F. M. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3-29.  doi: 10.1016/j.cam.2017.09.039.  Google Scholar

[2]

R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, Operator Theory: Advances and Applications, vol. 55, Birkhäuser Verlag, Basel, 1992. doi: 10.1007/978-3-0348-5727-7.  Google Scholar

[3]

T. Allahviranloo and M. B. Ahmadi, Fuzzy Laplace transforms, Soft Comput., 14 (2010), Art. no. 235. doi: 10.1007/s00500-008-0397-6.  Google Scholar

[4]

C. T. Anh and T. D. Ke, On nonlocal problems for retarded fractional differential equations in Banach spaces, Fixed Point Theory, 15 (2014), 373-392.   Google Scholar

[5]

G. Arthi and K. Balachandran, Controllability results for damped second-order impulsive neutral integro-differential systems with nonlocal conditions, J. Control Theory Appl., 11 (2013), 186-192.  doi: 10.1007/s11768-013-1084-4.  Google Scholar

[6]

P. Balasubramaniam, Controllability for the nonlinear fuzzy neutral functional differential equations, Far East J. Appl. Math., 9 (2002), 31-48.   Google Scholar

[7]

D. Baleanu, J. A. T. Machado and A. C. J. Luo, Fractional Dynamics and Control, Springer-Verlag, New York, 2012. doi: 10.1007/978-1-4614-0457-6.  Google Scholar

[8]

B. Bede, Mathematics of Fuzzy Sets and Fuzzy Logic, Studies in Fuzziness and Soft Computing, vol. 295, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-35221-8.  Google Scholar

[9]

B. Bede and S. G. Gal, Generalizations of the differential of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005), 581-599.  doi: 10.1016/j.fss.2004.08.001.  Google Scholar

[10]

B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141.  doi: 10.1016/j.fss.2012.10.003.  Google Scholar

[11]

A. ChaddhaS. N. Bora and R. Sakthivel, Approximate controllability of impulsive stochastic fractional differential equations with nonlocal conditions, Dyn. Syst. Appl., 27 (2018), 1-29.   Google Scholar

[12]

K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, vol. 2004, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[13]

T. DonchevA. Nosheen and V. Lupulescu, Fuzzy integro-differential equations with compactness type conditions, Hacet. J. Math. Stat., 43 (2014), 249-257.   Google Scholar

[14]

X. Fu, Controllability of abstract neutral functional differential systems with unbounded delay, Appl. Math. Comput., 151 (2004), 299-314.  doi: 10.1016/S0096-3003(03)00342-4.  Google Scholar

[15]

C. S. Gal and S. G. Gal, Semigroup of mappings on spaces of fuzzy-number-valued functions with applications to fuzzy differential equations, J. Fuzzy Math., 13 (2005), 647-682.   Google Scholar

[16]

R. GaneshR. Sakthivel and N. Mahmudov, Approximate controllability of fractional functional equations with infinite delay, Topol. Methods Nonlinear Anal., 43 (2014), 345-364.  doi: 10.12775/TMNA.2014.020.  Google Scholar

[17]

J. H. JeongJ. S. KimH. E. Youm and J. H. Park, Exact controllability for fuzzy differential equations using extremal solutions, J. Comput. Anal. Appl., 23 (2017), 1056-1069.   Google Scholar

[18]

S. JiG. Li and M. Wang, Controllability of impulsive differential systems with nonlocal conditions, Appl. Math. Comput., 217 (2011), 6981-6989.  doi: 10.1016/j.amc.2011.01.107.  Google Scholar

[19]

O. Kaleva, The Cauchy problem for fuzzy differential equations, Fuzzy Sets and Systems, 35 (1990), 389-396.  doi: 10.1016/0165-0114(90)90010-4.  Google Scholar

[20]

R. E. Kalman, Lectures on Controllability and Observability, Edizioni Cremonese, Rome, Italy, 1968.  Google Scholar

[21]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B. V., Amsterdam, 2006.  Google Scholar

[22]

A. Khastan, A new representation for inverse fuzzy transform and its applications, Soft Comput., 21 (2017), 3503-3512.  doi: 10.1007/s00500-017-2555-1.  Google Scholar

[23]

A. Khastan, New solutions for first order linear fuzzy difference equations, J. Comput. Appl. Math., 312 (2017), 156-166.  doi: 10.1016/j.cam.2016.03.004.  Google Scholar

[24]

A. Khastan and R. Rodríguez-López, An existence and uniqueness result for fuzzy Goursat partial differential equation, Fuzzy Sets and Systems, 375 (2019), 141-160.  doi: 10.1016/j.fss.2019.02.011.  Google Scholar

[25]

Y. C. KwunJ. S. KimH. E. Youm and J. H. Park, Approximate controllability for fuzzy differential equations driven by Liu process, J. Comput. Anal. Appl., 15 (2013), 163-175.   Google Scholar

[26]

V. Lakshmikantham and R. N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Series in Mathematical Analysis and Applications, Taylor & Francis Group, London, 2003. doi: 10.1201/9780203011386.  Google Scholar

[27]

J. Liang and H. Yang, Controllability of fractional integro-differential evolution equations with nonlocal conditions, Appl. Math. Comput., 254 (2015), 20-29.   Google Scholar

[28]

H. V. Long and N. P. Dong, An extension of Krasnoselskii's fixed point theorem and its application to nonlocal problems for implicit fractional differential systems with uncertainty, J. Fixed Point Theory Appl., 20 (2018), Paper no. 37, 27 pp. doi: 10.1007/s11784-018-0507-8.  Google Scholar

[29]

H. V. LongN. T. K. Son and H. T. T. Tam, The solvability of fuzzy partial differential equations under Caputo gH-differentiability, Fuzzy Sets and Systems, 309 (2017), 35-63.  doi: 10.1016/j.fss.2016.06.018.  Google Scholar

[30]

V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets and Systems, 265 (2015), 63-85.  doi: 10.1016/j.fss.2014.04.005.  Google Scholar

[31]

M. MuslimA. Kumar and R. Sakthivel, Exact and trajectory controllability of second-order systems with impulsive and and deviated arguments, Math. Methods Appl. Sci., 41 (2018), 4259-4272.  doi: 10.1002/mma.4888.  Google Scholar

[32]

S. Narayanamoorthy and S. Sowmiya, Approximate controllability result for nonlinear impulsive neutral fuzzy stochastic differential equations with nonlocal conditions, Adv. Difference Equ., 121 (2015), 16 pp. doi: 10.1186/s13662-015-0454-2.  Google Scholar

[33]

I. Podlubny, Fractional Differential Equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, vol. 198, Academic Press, Inc., San Diego, CA, 1999.  Google Scholar

[34]

R. SakthivelN. I. Mahmudov and J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334-10340.  doi: 10.1016/j.amc.2012.03.093.  Google Scholar

[35]

S. SalahshourT. Allahviranloo and S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1372-1381.  doi: 10.1016/j.cnsns.2011.07.005.  Google Scholar

[36]

S. Salahshour, T. Allahviranloo, S. Abbasbandy and D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty, Adv. Difference Equ., (2012), Art. no. 112, 12 pp. doi: 10.1186/1687-1847-2012-112.  Google Scholar

[37]

N. T. K. Son, A foundation on semigroup of operators defined on the set of triangular fuzzy numbers and its application to fuzzy fractional evolution equations, Fuzzy Sets and Systems, 347 (2018), 1-28.  doi: 10.1016/j.fss.2018.02.003.  Google Scholar

[38]

N. T. K. Son and N. P. Dong, Asymptotic behavior of $C^0$-solutions of evolution equations with uncertainties, J. Fixed Point Theory Appl., 20, (2018), Paper no. 153, 30 pp. doi: 10.1007/s11784-018-0633-3.  Google Scholar

[39]

L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71 (2009), 1311-1328.  doi: 10.1016/j.na.2008.12.005.  Google Scholar

[40]

L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets and Systems, 161 (2010), 1564-1584.  doi: 10.1016/j.fss.2009.06.009.  Google Scholar

[41]

S. TomasielloS. K. Khattri and J. Awrejcewicz, Differential quadrature-based simulation of a class of fuzzy damped fractional dynamical systems, Int. J. Numer. Anal. Model., 14 (2017), 63-75.   Google Scholar

[42]

S. Tomasiello and J. E. Macias-Diaz, Note on a Picard-like method for Caputo fuzzy fractional differential equations, Appl. Math. Inf. Sci., 11 (2017), 281-287.  doi: 10.18576/amis/110134.  Google Scholar

[43]

J. R. Wang and Y. Zhou, Complete controllability of fractional evolution systems, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4346-4355.  doi: 10.1016/j.cnsns.2012.02.029.  Google Scholar

Figure 1.  The level sets $ [u]^\alpha $ of a triangular fuzzy number $ u $
Figure 2.  The gH-differences $ w = u\ominus_{gH}v $ and $ z = v\ominus_{gH}u $ of fuzzy numbers $ u = (3, 6, 9) $ and $ v = (0, 1, 2)$
Figure 3.  The electrical circuit diagram
Figure 4.  The fuzzy solutions of the electrical circuit model without control input solved by $ \mathtt{fde12.m} $ and $\mathtt{flmm2.m} $
Table 1.  The parameters of the electrical circuit
Parameters Description The value
$ R_1 $ The first resistance $ 1 $ $ \Omega $
$ R_2 $ The second resistance $ 2 $ $ \Omega $
$ R_3 $ The third resistance $ 1 $ $ \Omega $
$ L_1 $ The inductance of the wire 1 $ 0.5 $ H
$ L_2 $ The inductance of the wire 2 $ 1 $ H
$ b $ The amplitude ("approximately $ 0.2 $") $ (0.15, 0.2, 0.25) $
$ \beta $ The fractional order $ \frac{1}{2} $
$ [0, T] $ Time $ [0, 1] $
Parameters Description The value
$ R_1 $ The first resistance $ 1 $ $ \Omega $
$ R_2 $ The second resistance $ 2 $ $ \Omega $
$ R_3 $ The third resistance $ 1 $ $ \Omega $
$ L_1 $ The inductance of the wire 1 $ 0.5 $ H
$ L_2 $ The inductance of the wire 2 $ 1 $ H
$ b $ The amplitude ("approximately $ 0.2 $") $ (0.15, 0.2, 0.25) $
$ \beta $ The fractional order $ \frac{1}{2} $
$ [0, T] $ Time $ [0, 1] $
[1]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[2]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[3]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[4]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[5]

Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201

[6]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[7]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[8]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[9]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[10]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[11]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[12]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[13]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[14]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[15]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[16]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[17]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[18]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[19]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[20]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (78)
  • HTML views (108)
  • Cited by (0)

[Back to Top]