• Previous Article
    Uniform stability in a vectorial full Von Kármán thermoelastic system with solenoidal dissipation and free boundary conditions
  • EECT Home
  • This Issue
  • Next Article
    On time fractional pseudo-parabolic equations with nonlocal integral conditions
doi: 10.3934/eect.2020106

Some results on the behaviour of transfer functions at the right half plane

1. 

Department of Mathematics, Gebze Technical University, Gebze, Kocaeli, Turkey

2. 

Amasya University, Technology Faculty, Department of Computer Engineering

3. 

Amasya University, Technology Faculty, Department of Electrical and Electronics Engineering, Amasya, Turkey

* Corresponding author: Bülent Nafi Örnek

Received  February 2020 Revised  September 2020 Published  December 2020

In this paper, an inequality for a transfer function is obtained assuming that its residues at the poles located on the imaginary axis in the right half plane. In addition, the extremal function of the proposed inequality is obtained by performing sharpness analysis. To interpret the results of analyses in terms of control theory, root-locus curves are plotted. According to the results, marginally and asymptotically stable transfer functions can be determined using the obtained extremal function in the proposed theorem.

Citation: Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, doi: 10.3934/eect.2020106
References:
[1]

M. CorlessE. Zeheb and R. Shorten, On the SPRification of linear descriptor systems via output feedback, IEEE Transactions on Automatic Control, 64 (2019), 1535-1549.  doi: 10.1109/TAC.2018.2849613.  Google Scholar

[2]

G. Fernández-AnayaJ.-J. Flores-Godoy and J. Álvarez-Ramírez, Preservation of properties in discrete-time systems under substitutions, Asian Journal of Control, 11 (2009), 367-375.  doi: 10.1002/asjc.114.  Google Scholar

[3]

J.-S. Hu and M.-C. Tsai, Robustness analysis of a practical impedance control system, IFAC Proceedings Volumes, 37 (2004), 725-730.  doi: 10.1016/S1474-6670(17)31695-6.  Google Scholar

[4]

S. S. Khilari, Transfer Function and Impulse Response Synthesis Using Classical Techniques, Master Thesis, University of Massachusetts Amherst, 2007. Google Scholar

[5]

E. Landau and G. Valiron, A deduction from Schwarz's lemma, Journal of the London Mathematical Society 4, (1929), 162–163. doi: 10.1112/jlms/s1-4.3.162.  Google Scholar

[6]

M. Liu and et al., On positive realness, negative imaginariness, and h-$\inf$ control of state-space symmetric systems, Automatica J. IFAC, 101 (2019), 190-196.  doi: 10.1016/j.automatica.2018.11.031.  Google Scholar

[7]

F. MukhtarY. Kuznetsov and P. Russer, Network modelling with Brune's synthesis, Advances in Radio Science, 9 (2011), 91-94.  doi: 10.5194/ars-9-91-2011.  Google Scholar

[8]

R. H. Nevanlinna, Eindeutige Analytische Funktionen, Springer-Verlag, Berlin, 1953.  Google Scholar

[9]

A. Ochoa, Driving point impedance and signal flow graph basics: a systematic approach to circuit analysis, in Feedback in Analog Circuits, Springer, Cham, 2016, 13–34. Google Scholar

[10]

Y. PanM. J. ErR. Chen and H. Yu, Output feedback adaptive neural control without seeking spr condition, Asian Journal of Control, 17 (2015), 1620-1630.  doi: 10.1002/asjc.966.  Google Scholar

[11]

F. Reza, A bound for the derivative of positive real functions, SIAM Review, 4 (1962), 40-42.  doi: 10.1137/1004005.  Google Scholar

[12]

M. Şengül, Foster impedance data modeling via singly terminated LC ladder networks, Turkish Journal of Electrical Engineering & Computer Sciences, 21 (2013), 785-792.   Google Scholar

[13]

A. Sharma and T. Soni, A review on passive network synthesis using cauer form, World J. Wireless Devices Eng., 1 (2017), 39-46.   Google Scholar

[14]

W. SunP. P. Khargonekar and and D. Shim, Solution to the positive real control problem for linear time-invariant systems, IEEE Transactions on Automatic Control, 39 (1994), 2034-2046.  doi: 10.1109/9.328822.  Google Scholar

[15]

M. S. Tavazoei, Passively realisable impedance functions by using two fractional elements and some resistors, IET Circuits, Devices & Systems, 12 (2017), 280-285.  doi: 10.1049/iet-cds.2017.0342.  Google Scholar

[16]

A. D. Wunsch and S.-P. Hu, A closed-form expression for the driving-point impedance of the small inverted L antenna, IEEE Transactions on Antennas and Propagation, 44 (1996), 236-242.  doi: 10.1109/8.481653.  Google Scholar

[17]

C. Xiao and D. J. Hill, Concepts of strict positive realness and the absolute stability problem of continuous-time systems, Automatica J. IFAC, 34 (1998), 1071-1082.  doi: 10.1016/S0005-1098(98)00049-1.  Google Scholar

show all references

References:
[1]

M. CorlessE. Zeheb and R. Shorten, On the SPRification of linear descriptor systems via output feedback, IEEE Transactions on Automatic Control, 64 (2019), 1535-1549.  doi: 10.1109/TAC.2018.2849613.  Google Scholar

[2]

G. Fernández-AnayaJ.-J. Flores-Godoy and J. Álvarez-Ramírez, Preservation of properties in discrete-time systems under substitutions, Asian Journal of Control, 11 (2009), 367-375.  doi: 10.1002/asjc.114.  Google Scholar

[3]

J.-S. Hu and M.-C. Tsai, Robustness analysis of a practical impedance control system, IFAC Proceedings Volumes, 37 (2004), 725-730.  doi: 10.1016/S1474-6670(17)31695-6.  Google Scholar

[4]

S. S. Khilari, Transfer Function and Impulse Response Synthesis Using Classical Techniques, Master Thesis, University of Massachusetts Amherst, 2007. Google Scholar

[5]

E. Landau and G. Valiron, A deduction from Schwarz's lemma, Journal of the London Mathematical Society 4, (1929), 162–163. doi: 10.1112/jlms/s1-4.3.162.  Google Scholar

[6]

M. Liu and et al., On positive realness, negative imaginariness, and h-$\inf$ control of state-space symmetric systems, Automatica J. IFAC, 101 (2019), 190-196.  doi: 10.1016/j.automatica.2018.11.031.  Google Scholar

[7]

F. MukhtarY. Kuznetsov and P. Russer, Network modelling with Brune's synthesis, Advances in Radio Science, 9 (2011), 91-94.  doi: 10.5194/ars-9-91-2011.  Google Scholar

[8]

R. H. Nevanlinna, Eindeutige Analytische Funktionen, Springer-Verlag, Berlin, 1953.  Google Scholar

[9]

A. Ochoa, Driving point impedance and signal flow graph basics: a systematic approach to circuit analysis, in Feedback in Analog Circuits, Springer, Cham, 2016, 13–34. Google Scholar

[10]

Y. PanM. J. ErR. Chen and H. Yu, Output feedback adaptive neural control without seeking spr condition, Asian Journal of Control, 17 (2015), 1620-1630.  doi: 10.1002/asjc.966.  Google Scholar

[11]

F. Reza, A bound for the derivative of positive real functions, SIAM Review, 4 (1962), 40-42.  doi: 10.1137/1004005.  Google Scholar

[12]

M. Şengül, Foster impedance data modeling via singly terminated LC ladder networks, Turkish Journal of Electrical Engineering & Computer Sciences, 21 (2013), 785-792.   Google Scholar

[13]

A. Sharma and T. Soni, A review on passive network synthesis using cauer form, World J. Wireless Devices Eng., 1 (2017), 39-46.   Google Scholar

[14]

W. SunP. P. Khargonekar and and D. Shim, Solution to the positive real control problem for linear time-invariant systems, IEEE Transactions on Automatic Control, 39 (1994), 2034-2046.  doi: 10.1109/9.328822.  Google Scholar

[15]

M. S. Tavazoei, Passively realisable impedance functions by using two fractional elements and some resistors, IET Circuits, Devices & Systems, 12 (2017), 280-285.  doi: 10.1049/iet-cds.2017.0342.  Google Scholar

[16]

A. D. Wunsch and S.-P. Hu, A closed-form expression for the driving-point impedance of the small inverted L antenna, IEEE Transactions on Antennas and Propagation, 44 (1996), 236-242.  doi: 10.1109/8.481653.  Google Scholar

[17]

C. Xiao and D. J. Hill, Concepts of strict positive realness and the absolute stability problem of continuous-time systems, Automatica J. IFAC, 34 (1998), 1071-1082.  doi: 10.1016/S0005-1098(98)00049-1.  Google Scholar

Figure 1.  Root-locus curves for the transfer function $ H(s) = \sum\limits_{i = 1}^{n}\frac{\alpha _{i}}{s-s_{i}}+i\beta $. It is assumed that $ \alpha_{i} $'s equal to 1 and $ \beta $ is zero. The figures are presented for different $ n $ values: (a) $ n = 1 $, (b) $ n = 2 $, (c) $ n = 3 $, (d) $ n = 4 $
[1]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[2]

Ralf Hielscher, Michael Quellmalz. Reconstructing a function on the sphere from its means along vertical slices. Inverse Problems & Imaging, 2016, 10 (3) : 711-739. doi: 10.3934/ipi.2016018

[3]

Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247

[4]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[5]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[8]

Frank Sottile. The special Schubert calculus is real. Electronic Research Announcements, 1999, 5: 35-39.

[9]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[10]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[11]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[12]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[13]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[14]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[15]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[16]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[17]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[18]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[19]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[20]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (391)
  • HTML views (158)
  • Cited by (0)

[Back to Top]