• Previous Article
    Optimal control problems for a neutral integro-differential system with infinite delay
  • EECT Home
  • This Issue
  • Next Article
    Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory"
February  2022, 11(1): 169-175. doi: 10.3934/eect.2020106

Some results on the behaviour of transfer functions at the right half plane

1. 

Department of Mathematics, Gebze Technical University, Gebze, Kocaeli, Turkey

2. 

Amasya University, Technology Faculty, Department of Computer Engineering

3. 

Amasya University, Technology Faculty, Department of Electrical and Electronics Engineering, Amasya, Turkey

* Corresponding author: Bülent Nafi Örnek

Received  February 2020 Revised  September 2020 Published  February 2022 Early access  December 2020

In this paper, an inequality for a transfer function is obtained assuming that its residues at the poles located on the imaginary axis in the right half plane. In addition, the extremal function of the proposed inequality is obtained by performing sharpness analysis. To interpret the results of analyses in terms of control theory, root-locus curves are plotted. According to the results, marginally and asymptotically stable transfer functions can be determined using the obtained extremal function in the proposed theorem.

Citation: Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations and Control Theory, 2022, 11 (1) : 169-175. doi: 10.3934/eect.2020106
References:
[1]

M. CorlessE. Zeheb and R. Shorten, On the SPRification of linear descriptor systems via output feedback, IEEE Transactions on Automatic Control, 64 (2019), 1535-1549.  doi: 10.1109/TAC.2018.2849613.

[2]

G. Fernández-AnayaJ.-J. Flores-Godoy and J. Álvarez-Ramírez, Preservation of properties in discrete-time systems under substitutions, Asian Journal of Control, 11 (2009), 367-375.  doi: 10.1002/asjc.114.

[3]

J.-S. Hu and M.-C. Tsai, Robustness analysis of a practical impedance control system, IFAC Proceedings Volumes, 37 (2004), 725-730.  doi: 10.1016/S1474-6670(17)31695-6.

[4]

S. S. Khilari, Transfer Function and Impulse Response Synthesis Using Classical Techniques, Master Thesis, University of Massachusetts Amherst, 2007.

[5]

E. Landau and G. Valiron, A deduction from Schwarz's lemma, Journal of the London Mathematical Society 4, (1929), 162–163. doi: 10.1112/jlms/s1-4.3.162.

[6]

M. Liu and et al., On positive realness, negative imaginariness, and h-$\inf$ control of state-space symmetric systems, Automatica J. IFAC, 101 (2019), 190-196.  doi: 10.1016/j.automatica.2018.11.031.

[7]

F. MukhtarY. Kuznetsov and P. Russer, Network modelling with Brune's synthesis, Advances in Radio Science, 9 (2011), 91-94.  doi: 10.5194/ars-9-91-2011.

[8]

R. H. Nevanlinna, Eindeutige Analytische Funktionen, Springer-Verlag, Berlin, 1953.

[9]

A. Ochoa, Driving point impedance and signal flow graph basics: a systematic approach to circuit analysis, in Feedback in Analog Circuits, Springer, Cham, 2016, 13–34.

[10]

Y. PanM. J. ErR. Chen and H. Yu, Output feedback adaptive neural control without seeking spr condition, Asian Journal of Control, 17 (2015), 1620-1630.  doi: 10.1002/asjc.966.

[11]

F. Reza, A bound for the derivative of positive real functions, SIAM Review, 4 (1962), 40-42.  doi: 10.1137/1004005.

[12]

M. Şengül, Foster impedance data modeling via singly terminated LC ladder networks, Turkish Journal of Electrical Engineering & Computer Sciences, 21 (2013), 785-792. 

[13]

A. Sharma and T. Soni, A review on passive network synthesis using cauer form, World J. Wireless Devices Eng., 1 (2017), 39-46. 

[14]

W. SunP. P. Khargonekar and and D. Shim, Solution to the positive real control problem for linear time-invariant systems, IEEE Transactions on Automatic Control, 39 (1994), 2034-2046.  doi: 10.1109/9.328822.

[15]

M. S. Tavazoei, Passively realisable impedance functions by using two fractional elements and some resistors, IET Circuits, Devices & Systems, 12 (2017), 280-285.  doi: 10.1049/iet-cds.2017.0342.

[16]

A. D. Wunsch and S.-P. Hu, A closed-form expression for the driving-point impedance of the small inverted L antenna, IEEE Transactions on Antennas and Propagation, 44 (1996), 236-242.  doi: 10.1109/8.481653.

[17]

C. Xiao and D. J. Hill, Concepts of strict positive realness and the absolute stability problem of continuous-time systems, Automatica J. IFAC, 34 (1998), 1071-1082.  doi: 10.1016/S0005-1098(98)00049-1.

show all references

References:
[1]

M. CorlessE. Zeheb and R. Shorten, On the SPRification of linear descriptor systems via output feedback, IEEE Transactions on Automatic Control, 64 (2019), 1535-1549.  doi: 10.1109/TAC.2018.2849613.

[2]

G. Fernández-AnayaJ.-J. Flores-Godoy and J. Álvarez-Ramírez, Preservation of properties in discrete-time systems under substitutions, Asian Journal of Control, 11 (2009), 367-375.  doi: 10.1002/asjc.114.

[3]

J.-S. Hu and M.-C. Tsai, Robustness analysis of a practical impedance control system, IFAC Proceedings Volumes, 37 (2004), 725-730.  doi: 10.1016/S1474-6670(17)31695-6.

[4]

S. S. Khilari, Transfer Function and Impulse Response Synthesis Using Classical Techniques, Master Thesis, University of Massachusetts Amherst, 2007.

[5]

E. Landau and G. Valiron, A deduction from Schwarz's lemma, Journal of the London Mathematical Society 4, (1929), 162–163. doi: 10.1112/jlms/s1-4.3.162.

[6]

M. Liu and et al., On positive realness, negative imaginariness, and h-$\inf$ control of state-space symmetric systems, Automatica J. IFAC, 101 (2019), 190-196.  doi: 10.1016/j.automatica.2018.11.031.

[7]

F. MukhtarY. Kuznetsov and P. Russer, Network modelling with Brune's synthesis, Advances in Radio Science, 9 (2011), 91-94.  doi: 10.5194/ars-9-91-2011.

[8]

R. H. Nevanlinna, Eindeutige Analytische Funktionen, Springer-Verlag, Berlin, 1953.

[9]

A. Ochoa, Driving point impedance and signal flow graph basics: a systematic approach to circuit analysis, in Feedback in Analog Circuits, Springer, Cham, 2016, 13–34.

[10]

Y. PanM. J. ErR. Chen and H. Yu, Output feedback adaptive neural control without seeking spr condition, Asian Journal of Control, 17 (2015), 1620-1630.  doi: 10.1002/asjc.966.

[11]

F. Reza, A bound for the derivative of positive real functions, SIAM Review, 4 (1962), 40-42.  doi: 10.1137/1004005.

[12]

M. Şengül, Foster impedance data modeling via singly terminated LC ladder networks, Turkish Journal of Electrical Engineering & Computer Sciences, 21 (2013), 785-792. 

[13]

A. Sharma and T. Soni, A review on passive network synthesis using cauer form, World J. Wireless Devices Eng., 1 (2017), 39-46. 

[14]

W. SunP. P. Khargonekar and and D. Shim, Solution to the positive real control problem for linear time-invariant systems, IEEE Transactions on Automatic Control, 39 (1994), 2034-2046.  doi: 10.1109/9.328822.

[15]

M. S. Tavazoei, Passively realisable impedance functions by using two fractional elements and some resistors, IET Circuits, Devices & Systems, 12 (2017), 280-285.  doi: 10.1049/iet-cds.2017.0342.

[16]

A. D. Wunsch and S.-P. Hu, A closed-form expression for the driving-point impedance of the small inverted L antenna, IEEE Transactions on Antennas and Propagation, 44 (1996), 236-242.  doi: 10.1109/8.481653.

[17]

C. Xiao and D. J. Hill, Concepts of strict positive realness and the absolute stability problem of continuous-time systems, Automatica J. IFAC, 34 (1998), 1071-1082.  doi: 10.1016/S0005-1098(98)00049-1.

Figure 1.  Root-locus curves for the transfer function $ H(s) = \sum\limits_{i = 1}^{n}\frac{\alpha _{i}}{s-s_{i}}+i\beta $. It is assumed that $ \alpha_{i} $'s equal to 1 and $ \beta $ is zero. The figures are presented for different $ n $ values: (a) $ n = 1 $, (b) $ n = 2 $, (c) $ n = 3 $, (d) $ n = 4 $
[1]

Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3321-3327. doi: 10.3934/dcds.2013.33.3321

[2]

Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795

[3]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[4]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[5]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[6]

Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations and Control Theory, 2022, 11 (3) : 729-748. doi: 10.3934/eect.2021023

[7]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[8]

Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963

[9]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[10]

J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413

[11]

H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181

[12]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[13]

Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42.

[14]

Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741

[15]

Ariela Briani, Hasnaa Zidani. Characterization of the value function of final state constrained control problems with BV trajectories. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1567-1587. doi: 10.3934/cpaa.2011.10.1567

[16]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial and Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[17]

Karam Allali, Sanaa Harroudi, Delfim F. M. Torres. Optimal control of an HIV model with a trilinear antibody growth function. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 501-518. doi: 10.3934/dcdss.2021148

[18]

Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837

[19]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[20]

Ramon Plaza, K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 885-924. doi: 10.3934/dcds.2004.10.885

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (1632)
  • HTML views (571)
  • Cited by (0)

[Back to Top]