# American Institute of Mathematical Sciences

• Previous Article
Impulsive hemivariational inequality for a class of history-dependent quasistatic frictional contact problems
• EECT Home
• This Issue
• Next Article
$L^p$-exact controllability of partial differential equations with nonlocal terms
doi: 10.3934/eect.2020106
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

## Some results on the behaviour of transfer functions at the right half plane

 1 Department of Mathematics, Gebze Technical University, Gebze, Kocaeli, Turkey 2 Amasya University, Technology Faculty, Department of Computer Engineering 3 Amasya University, Technology Faculty, Department of Electrical and Electronics Engineering, Amasya, Turkey

* Corresponding author: Bülent Nafi Örnek

Received  February 2020 Revised  September 2020 Early access December 2020

In this paper, an inequality for a transfer function is obtained assuming that its residues at the poles located on the imaginary axis in the right half plane. In addition, the extremal function of the proposed inequality is obtained by performing sharpness analysis. To interpret the results of analyses in terms of control theory, root-locus curves are plotted. According to the results, marginally and asymptotically stable transfer functions can be determined using the obtained extremal function in the proposed theorem.

Citation: Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, doi: 10.3934/eect.2020106
##### References:
 [1] M. Corless, E. Zeheb and R. Shorten, On the SPRification of linear descriptor systems via output feedback, IEEE Transactions on Automatic Control, 64 (2019), 1535-1549.  doi: 10.1109/TAC.2018.2849613.  Google Scholar [2] G. Fernández-Anaya, J.-J. Flores-Godoy and J. Álvarez-Ramírez, Preservation of properties in discrete-time systems under substitutions, Asian Journal of Control, 11 (2009), 367-375.  doi: 10.1002/asjc.114.  Google Scholar [3] J.-S. Hu and M.-C. Tsai, Robustness analysis of a practical impedance control system, IFAC Proceedings Volumes, 37 (2004), 725-730.  doi: 10.1016/S1474-6670(17)31695-6.  Google Scholar [4] S. S. Khilari, Transfer Function and Impulse Response Synthesis Using Classical Techniques, Master Thesis, University of Massachusetts Amherst, 2007. Google Scholar [5] E. Landau and G. Valiron, A deduction from Schwarz's lemma, Journal of the London Mathematical Society 4, (1929), 162–163. doi: 10.1112/jlms/s1-4.3.162.  Google Scholar [6] M. Liu and et al., On positive realness, negative imaginariness, and h-$\inf$ control of state-space symmetric systems, Automatica J. IFAC, 101 (2019), 190-196.  doi: 10.1016/j.automatica.2018.11.031.  Google Scholar [7] F. Mukhtar, Y. Kuznetsov and P. Russer, Network modelling with Brune's synthesis, Advances in Radio Science, 9 (2011), 91-94.  doi: 10.5194/ars-9-91-2011.  Google Scholar [8] R. H. Nevanlinna, Eindeutige Analytische Funktionen, Springer-Verlag, Berlin, 1953.  Google Scholar [9] A. Ochoa, Driving point impedance and signal flow graph basics: a systematic approach to circuit analysis, in Feedback in Analog Circuits, Springer, Cham, 2016, 13–34. Google Scholar [10] Y. Pan, M. J. Er, R. Chen and H. Yu, Output feedback adaptive neural control without seeking spr condition, Asian Journal of Control, 17 (2015), 1620-1630.  doi: 10.1002/asjc.966.  Google Scholar [11] F. Reza, A bound for the derivative of positive real functions, SIAM Review, 4 (1962), 40-42.  doi: 10.1137/1004005.  Google Scholar [12] M. Şengül, Foster impedance data modeling via singly terminated LC ladder networks, Turkish Journal of Electrical Engineering & Computer Sciences, 21 (2013), 785-792.   Google Scholar [13] A. Sharma and T. Soni, A review on passive network synthesis using cauer form, World J. Wireless Devices Eng., 1 (2017), 39-46.   Google Scholar [14] W. Sun, P. P. Khargonekar and and D. Shim, Solution to the positive real control problem for linear time-invariant systems, IEEE Transactions on Automatic Control, 39 (1994), 2034-2046.  doi: 10.1109/9.328822.  Google Scholar [15] M. S. Tavazoei, Passively realisable impedance functions by using two fractional elements and some resistors, IET Circuits, Devices & Systems, 12 (2017), 280-285.  doi: 10.1049/iet-cds.2017.0342.  Google Scholar [16] A. D. Wunsch and S.-P. Hu, A closed-form expression for the driving-point impedance of the small inverted L antenna, IEEE Transactions on Antennas and Propagation, 44 (1996), 236-242.  doi: 10.1109/8.481653.  Google Scholar [17] C. Xiao and D. J. Hill, Concepts of strict positive realness and the absolute stability problem of continuous-time systems, Automatica J. IFAC, 34 (1998), 1071-1082.  doi: 10.1016/S0005-1098(98)00049-1.  Google Scholar

show all references

##### References:
 [1] M. Corless, E. Zeheb and R. Shorten, On the SPRification of linear descriptor systems via output feedback, IEEE Transactions on Automatic Control, 64 (2019), 1535-1549.  doi: 10.1109/TAC.2018.2849613.  Google Scholar [2] G. Fernández-Anaya, J.-J. Flores-Godoy and J. Álvarez-Ramírez, Preservation of properties in discrete-time systems under substitutions, Asian Journal of Control, 11 (2009), 367-375.  doi: 10.1002/asjc.114.  Google Scholar [3] J.-S. Hu and M.-C. Tsai, Robustness analysis of a practical impedance control system, IFAC Proceedings Volumes, 37 (2004), 725-730.  doi: 10.1016/S1474-6670(17)31695-6.  Google Scholar [4] S. S. Khilari, Transfer Function and Impulse Response Synthesis Using Classical Techniques, Master Thesis, University of Massachusetts Amherst, 2007. Google Scholar [5] E. Landau and G. Valiron, A deduction from Schwarz's lemma, Journal of the London Mathematical Society 4, (1929), 162–163. doi: 10.1112/jlms/s1-4.3.162.  Google Scholar [6] M. Liu and et al., On positive realness, negative imaginariness, and h-$\inf$ control of state-space symmetric systems, Automatica J. IFAC, 101 (2019), 190-196.  doi: 10.1016/j.automatica.2018.11.031.  Google Scholar [7] F. Mukhtar, Y. Kuznetsov and P. Russer, Network modelling with Brune's synthesis, Advances in Radio Science, 9 (2011), 91-94.  doi: 10.5194/ars-9-91-2011.  Google Scholar [8] R. H. Nevanlinna, Eindeutige Analytische Funktionen, Springer-Verlag, Berlin, 1953.  Google Scholar [9] A. Ochoa, Driving point impedance and signal flow graph basics: a systematic approach to circuit analysis, in Feedback in Analog Circuits, Springer, Cham, 2016, 13–34. Google Scholar [10] Y. Pan, M. J. Er, R. Chen and H. Yu, Output feedback adaptive neural control without seeking spr condition, Asian Journal of Control, 17 (2015), 1620-1630.  doi: 10.1002/asjc.966.  Google Scholar [11] F. Reza, A bound for the derivative of positive real functions, SIAM Review, 4 (1962), 40-42.  doi: 10.1137/1004005.  Google Scholar [12] M. Şengül, Foster impedance data modeling via singly terminated LC ladder networks, Turkish Journal of Electrical Engineering & Computer Sciences, 21 (2013), 785-792.   Google Scholar [13] A. Sharma and T. Soni, A review on passive network synthesis using cauer form, World J. Wireless Devices Eng., 1 (2017), 39-46.   Google Scholar [14] W. Sun, P. P. Khargonekar and and D. Shim, Solution to the positive real control problem for linear time-invariant systems, IEEE Transactions on Automatic Control, 39 (1994), 2034-2046.  doi: 10.1109/9.328822.  Google Scholar [15] M. S. Tavazoei, Passively realisable impedance functions by using two fractional elements and some resistors, IET Circuits, Devices & Systems, 12 (2017), 280-285.  doi: 10.1049/iet-cds.2017.0342.  Google Scholar [16] A. D. Wunsch and S.-P. Hu, A closed-form expression for the driving-point impedance of the small inverted L antenna, IEEE Transactions on Antennas and Propagation, 44 (1996), 236-242.  doi: 10.1109/8.481653.  Google Scholar [17] C. Xiao and D. J. Hill, Concepts of strict positive realness and the absolute stability problem of continuous-time systems, Automatica J. IFAC, 34 (1998), 1071-1082.  doi: 10.1016/S0005-1098(98)00049-1.  Google Scholar
Root-locus curves for the transfer function $H(s) = \sum\limits_{i = 1}^{n}\frac{\alpha _{i}}{s-s_{i}}+i\beta$. It is assumed that $\alpha_{i}$'s equal to 1 and $\beta$ is zero. The figures are presented for different $n$ values: (a) $n = 1$, (b) $n = 2$, (c) $n = 3$, (d) $n = 4$
 [1] Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3321-3327. doi: 10.3934/dcds.2013.33.3321 [2] Yulin Zhao. On the monotonicity of the period function of a quadratic system. Discrete & Continuous Dynamical Systems, 2005, 13 (3) : 795-810. doi: 10.3934/dcds.2005.13.795 [3] Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449 [4] Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105 [5] Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098 [6] Yipeng Chen, Yicheng Liu, Xiao Wang. Exponential stability for a multi-particle system with piecewise interaction function and stochastic disturbance. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021023 [7] Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939 [8] Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963 [9] J. William Hoffman. Remarks on the zeta function of a graph. Conference Publications, 2003, 2003 (Special) : 413-422. doi: 10.3934/proc.2003.2003.413 [10] H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4085-4095. doi: 10.3934/cpaa.2020181 [11] Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669 [12] Ken Ono. Parity of the partition function. Electronic Research Announcements, 1995, 1: 35-42. [13] Tomasz Downarowicz, Yonatan Gutman, Dawid Huczek. Rank as a function of measure. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2741-2750. doi: 10.3934/dcds.2014.34.2741 [14] Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 [15] Ariela Briani, Hasnaa Zidani. Characterization of the value function of final state constrained control problems with BV trajectories. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1567-1587. doi: 10.3934/cpaa.2011.10.1567 [16] Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401 [17] Peter Howard, K. Zumbrun. The Evans function and stability criteria for degenerate viscous shock waves. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : 837-855. doi: 10.3934/dcds.2004.10.837 [18] Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 [19] Ramon Plaza, K. Zumbrun. An Evans function approach to spectral stability of small-amplitude shock profiles. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : 885-924. doi: 10.3934/dcds.2004.10.885 [20] Yong Xia, Ruey-Lin Sheu, Shu-Cherng Fang, Wenxun Xing. Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1307-1328. doi: 10.3934/jimo.2016074

2020 Impact Factor: 1.081

## Tools

Article outline

Figures and Tables