doi: 10.3934/eect.2020109

On time fractional pseudo-parabolic equations with nonlocal integral conditions

1. 

Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam

2. 

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

3. 

Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey, Institute of Space Sciences, P.O.Box, MG-23, R 76900, Magurele-Bucharest, Romania

* Corresponding author: Nguyen H. Tuan

Received  July 2020 Revised  October 2020 Published  December 2020

In this paper, we study the nonlocal problem for pseudo-parabolic equation with time and space fractional derivatives. The time derivative is of Caputo type and of order $ \sigma,\; \; 0<\sigma<1 $ and the space fractional derivative is of order $ \alpha,\beta >0 $. In the first part, we obtain some results of the existence and uniqueness of our problem with suitably chosen $ \alpha, \beta $. The technique uses a Sobolev embedding and is based on constructing a Mittag-Leffler operator. In the second part, we give the ill-posedness of our problem and give a regularized solution. An error estimate in $ L^p $ between the regularized solution and the sought solution is obtained.

Citation: Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, doi: 10.3934/eect.2020109
References:
[1]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc, 352 (2000), 285-310.  doi: 10.1090/S0002-9947-99-02528-3.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm Sci, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[3]

P. N. Belov, The Numerical Methods of Weather Forecasting, Gidrometeoizdat, Leningrad, 1975. Google Scholar

[4]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser.A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[5]

M. K. Beshtokov, Boundary-value problems for loaded pseudoparabolic equations of fractional order and difference methods of their solving, Russian Mathematics, 63 (2019), 1-10.   Google Scholar

[6]

M. K. Beshtokov, Boundary value problems for a pseudoparabolic equation with the Caputo fractional derivative, Differ. Equ, 55 (2019), 884-893.  doi: 10.1134/S0012266119070024.  Google Scholar

[7]

M. K. Beshtokov, Toward boundary-value problems for degenerating pseudoparabolic equations with Gerasimov-Caputo fractional derivative, Izv. Vyssh. Uchebn. Zaved. Mat, 62 (2018), 3-16.   Google Scholar

[8]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys, 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[9]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[10]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 1360 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[11]

J.-D. DjidaA. Fernandez and I. Area, Well-posedness results for fractional semi-linear wave equations, Discrete Contin. Dyn. Syst. Ser B, 25 (2020), 569-597.  doi: 10.3934/dcdsb.2019255.  Google Scholar

[12]

N. Dokuchaev, On recovering parabolic diffusions from their time-averages, Calc. Var. Partial Differential Equations, 58 (2019), 14 pp. doi: 10.1007/s00526-018-1464-1.  Google Scholar

[13]

R. E. EwingR. D. Lazarov and Y. Lin, Finite volume element approximations of nonlocal in time one-dimensional flows in porous media, Computing, 64 (2000), 157-182.  doi: 10.1007/s006070050007.  Google Scholar

[14]

R. Gorenflo, A. A. Kilbas and F. Mainardi, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, (2014). doi: 10.1007/978-3-662-43930-2.  Google Scholar

[15]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J, 26 (1996), 475-491.  doi: 10.32917/hmj/1206127254.  Google Scholar

[16]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal, 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.  Google Scholar

[17]

B. Kaltenbacher and W. Rundell, Regularization of a backward parabolic equation by fractional operators, Inverse Probl. Imaging, 13 (2019), 401-430.  doi: 10.3934/ipi.2019020.  Google Scholar

[18]

N. H. Luc, L. N. Huynh, D. Baleanu and N. H. Can, Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator, Adv. Difference Equ, 2020 (2020), 23 pp. doi: 10.1186/s13662-020-02712-y.  Google Scholar

[19]

Y. LiuR. Xu and T. Yu, Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations, Nonlinear Anal, 68 (2008), 3332-3348.  doi: 10.1016/j.na.2007.03.029.  Google Scholar

[20]

T. B. NgocD. BaleanuL. T. M. Duc and N. H. Tuan, Regularity results for fractional diffusion equations involving fractional derivative with Mittag-Leffler kernel, Math. Methods Appl. Sci, 43 (2020), 7208-7226.  doi: 10.1002/mma.6459.  Google Scholar

[21]

E. Otárola and A. J. Salgado, Regularity of solutions to space-time fractional wave equations: A PDE approach, Fract. Calc. Appl. Anal, 21 (2018), 1262-1293.  doi: 10.1515/fca-2018-0067.  Google Scholar

[22]

C. V. Pao, Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl., 195 (1995), 702-718.  doi: 10.1006/jmaa.1995.1384.  Google Scholar

[23]

Q. Pavol and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2007. Google Scholar

[24]

V. Padron, Effect of aggregation on population recovery modeled by a forward-backward pseudo parabolic equation, Trans. Amer. Math. Soc, 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[25]

K. Sakamoto and M. Yamamoto, Initial value/boudary value problems for fractional diffusion - wave equations and applications to some inverse problems, J. Math. Anal. Appl, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[26]

V. V. Shelukhin, A non-local (in time) model for radionuclides propagation in a Stokes fluid, Dinamika Sploshn. Sredy, 107 (1993), 180-193.   Google Scholar

[27]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal, 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[28]

N. H. Tuan, D. Baleanu, T. N. Thach, D. O'Regan and N. H. Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data, J. Comput. Appl. Math, 376 (2020), 25 pp. doi: 10.1016/j.cam.2020.112883.  Google Scholar

[29]

N. H. Tuan, T. B. Ngoc, Y. Zhou and D. O'Regan, On existence and regularity of a terminal value problem for the time fractional diffusion equation, Inverse Problems, 36, (2020), 41 pp. doi: 10.1088/1361-6420/ab730d.  Google Scholar

[30]

J. M. Vaquero and S. Sajavicius, The two-level finite difference schemes for the heat equation with nonlocal initial condition, Appl. Math. Comput., 342 (2019), 166-177.  doi: 10.1016/j.amc.2018.09.025.  Google Scholar

[31]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Functional Analysis, 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

show all references

References:
[1]

J. M. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc, 352 (2000), 285-310.  doi: 10.1090/S0002-9947-99-02528-3.  Google Scholar

[2]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm Sci, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[3]

P. N. Belov, The Numerical Methods of Weather Forecasting, Gidrometeoizdat, Leningrad, 1975. Google Scholar

[4]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London Ser.A, 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[5]

M. K. Beshtokov, Boundary-value problems for loaded pseudoparabolic equations of fractional order and difference methods of their solving, Russian Mathematics, 63 (2019), 1-10.   Google Scholar

[6]

M. K. Beshtokov, Boundary value problems for a pseudoparabolic equation with the Caputo fractional derivative, Differ. Equ, 55 (2019), 884-893.  doi: 10.1134/S0012266119070024.  Google Scholar

[7]

M. K. Beshtokov, Toward boundary-value problems for degenerating pseudoparabolic equations with Gerasimov-Caputo fractional derivative, Izv. Vyssh. Uchebn. Zaved. Mat, 62 (2018), 3-16.   Google Scholar

[8]

P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys, 19 (1968), 614-627.  doi: 10.1007/BF01594969.  Google Scholar

[9]

H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[10]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math, 1360 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[11]

J.-D. DjidaA. Fernandez and I. Area, Well-posedness results for fractional semi-linear wave equations, Discrete Contin. Dyn. Syst. Ser B, 25 (2020), 569-597.  doi: 10.3934/dcdsb.2019255.  Google Scholar

[12]

N. Dokuchaev, On recovering parabolic diffusions from their time-averages, Calc. Var. Partial Differential Equations, 58 (2019), 14 pp. doi: 10.1007/s00526-018-1464-1.  Google Scholar

[13]

R. E. EwingR. D. Lazarov and Y. Lin, Finite volume element approximations of nonlocal in time one-dimensional flows in porous media, Computing, 64 (2000), 157-182.  doi: 10.1007/s006070050007.  Google Scholar

[14]

R. Gorenflo, A. A. Kilbas and F. Mainardi, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, (2014). doi: 10.1007/978-3-662-43930-2.  Google Scholar

[15]

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J, 26 (1996), 475-491.  doi: 10.32917/hmj/1206127254.  Google Scholar

[16]

M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal, 20 (2017), 7-51.  doi: 10.1515/fca-2017-0002.  Google Scholar

[17]

B. Kaltenbacher and W. Rundell, Regularization of a backward parabolic equation by fractional operators, Inverse Probl. Imaging, 13 (2019), 401-430.  doi: 10.3934/ipi.2019020.  Google Scholar

[18]

N. H. Luc, L. N. Huynh, D. Baleanu and N. H. Can, Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper-Bessel operator, Adv. Difference Equ, 2020 (2020), 23 pp. doi: 10.1186/s13662-020-02712-y.  Google Scholar

[19]

Y. LiuR. Xu and T. Yu, Global existence, nonexistence and asymptotic behavior of solutions for the Cauchy problem of semilinear heat equations, Nonlinear Anal, 68 (2008), 3332-3348.  doi: 10.1016/j.na.2007.03.029.  Google Scholar

[20]

T. B. NgocD. BaleanuL. T. M. Duc and N. H. Tuan, Regularity results for fractional diffusion equations involving fractional derivative with Mittag-Leffler kernel, Math. Methods Appl. Sci, 43 (2020), 7208-7226.  doi: 10.1002/mma.6459.  Google Scholar

[21]

E. Otárola and A. J. Salgado, Regularity of solutions to space-time fractional wave equations: A PDE approach, Fract. Calc. Appl. Anal, 21 (2018), 1262-1293.  doi: 10.1515/fca-2018-0067.  Google Scholar

[22]

C. V. Pao, Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions, J. Math. Anal. Appl., 195 (1995), 702-718.  doi: 10.1006/jmaa.1995.1384.  Google Scholar

[23]

Q. Pavol and P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2007. Google Scholar

[24]

V. Padron, Effect of aggregation on population recovery modeled by a forward-backward pseudo parabolic equation, Trans. Amer. Math. Soc, 356 (2004), 2739-2756.  doi: 10.1090/S0002-9947-03-03340-3.  Google Scholar

[25]

K. Sakamoto and M. Yamamoto, Initial value/boudary value problems for fractional diffusion - wave equations and applications to some inverse problems, J. Math. Anal. Appl, 382 (2011), 426-447.  doi: 10.1016/j.jmaa.2011.04.058.  Google Scholar

[26]

V. V. Shelukhin, A non-local (in time) model for radionuclides propagation in a Stokes fluid, Dinamika Sploshn. Sredy, 107 (1993), 180-193.   Google Scholar

[27]

R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal, 1 (1970), 1-26.  doi: 10.1137/0501001.  Google Scholar

[28]

N. H. Tuan, D. Baleanu, T. N. Thach, D. O'Regan and N. H. Can, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data, J. Comput. Appl. Math, 376 (2020), 25 pp. doi: 10.1016/j.cam.2020.112883.  Google Scholar

[29]

N. H. Tuan, T. B. Ngoc, Y. Zhou and D. O'Regan, On existence and regularity of a terminal value problem for the time fractional diffusion equation, Inverse Problems, 36, (2020), 41 pp. doi: 10.1088/1361-6420/ab730d.  Google Scholar

[30]

J. M. Vaquero and S. Sajavicius, The two-level finite difference schemes for the heat equation with nonlocal initial condition, Appl. Math. Comput., 342 (2019), 166-177.  doi: 10.1016/j.amc.2018.09.025.  Google Scholar

[31]

R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Functional Analysis, 264 (2013), 2732-2763.  doi: 10.1016/j.jfa.2013.03.010.  Google Scholar

[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[5]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[6]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[7]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[8]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[9]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[10]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[11]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[12]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[13]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[14]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[15]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[16]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[17]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[18]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[19]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[20]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

2019 Impact Factor: 0.953

Metrics

  • PDF downloads (49)
  • HTML views (117)
  • Cited by (0)

[Back to Top]