February  2022, 11(1): 239-258. doi: 10.3934/eect.2021001

Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives

Guangxi University for Nationalities, Faculty of Mathematics and Physics, Nanning 530006, Guangxi Province, P. R. China

* Corresponding author: Biao Zeng

Received  May 2020 Revised  October 2020 Published  February 2022 Early access  January 2021

Fund Project: The first author is supported by the Natural Science Foundation of Guangxi Province grant No. 2019GXNSFBA185005, the Start-up Project of Scientific Research on Introducing talents at school level in Guangxi University for Nationalities grant No. 2019KJQD04 and the Xiangsihu Young Scholars Innovative Research Team of Guangxi University for Nationalities grant No. 2019RSCXSHQN02

The goal of this paper is to provide systematic approaches to study the feedback control systems governed by fractional impulsive delay evolution equations involving Caputo fractional derivatives in separable reflexive Banach spaces. This work is a continuation of previous work. We firstly give an existence result of mild solutions for the equations by applying the Banach's fixed point theorem and the Leray-Schauder alternative fixed point theorem. Next, by using the Filippove theorem and the Cesari property, we obtain the existence result of feasible pairs for the feedback control system. Finally, some applications are given to illustrate our main results.

Citation: Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations and Control Theory, 2022, 11 (1) : 239-258. doi: 10.3934/eect.2021001
References:
[1]

Y.-K. ChangJ. J. Nieto and Z.-H. Zhao, Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal.: Hybrid Systems, 4 (2010), 593-599.  doi: 10.1016/j.nahs.2010.03.006.

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.

[4]

G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Weslwey, 1986.

[5]

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8.

[6]

M. I. KamenskiiP. NistriV. V. Obukhovskii and P. Zecca, Optimal feedback control for a semilinear evolution equation, J. Optim. Theory Appl., 82 (1994), 503-517.  doi: 10.1007/BF02192215.

[7]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications 7, 2001. doi: 10.1515/9783110870893.

[8]

N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results. Math., 63 (2013), 1289-1310.  doi: 10.1007/s00025-012-0269-3.

[9]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, in North-Holland Mathematics Studies, vol. 204, Elservier Science B.V., Amsterdam, (2006).

[10]

X. J. Li and J. M. Yong, Optimal Control Theory for infinite Dimensional Systems, Birkhäuser, Boster, 1995. doi: 10.1007/978-1-4612-4260-4.

[11]

Z. Liu and X. Li, Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1362-1373.  doi: 10.1016/j.cnsns.2012.10.010.

[12]

Z. LiuX. Li and J. Sun, Controllability of nonlinear fractional impulsive evolution systems, J. Int. Equ. Appl., 25 (2013), 395-405.  doi: 10.1216/JIE-2013-25-3-395.

[13]

Z. LiuS. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.  doi: 10.1016/j.jde.2016.01.012.

[14]

A. L. Mees, Dynamics of Feedback Systems, John Wiley & Sons, Ltd., New York, 1981.

[15]

B. M. Miller and E. Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003. doi: 10.1007/978-1-4615-0095-7.

[16]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[18] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. 
[19]

R. SakthivelY. Ren and N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451-1459.  doi: 10.1016/j.camwa.2011.04.040.

[20]

X. J. Wang and C. Z. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equation, Electronic Journal of Qualitative Theory of Differential Equations, (2011), 1–15. doi: 10.14232/ejqtde.2011.1.3.

[21]

J. R. WangM. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-362.  doi: 10.4310/DPDE.2011.v8.n4.a3.

[22]

J. R. WangM. Fečkan and Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831.  doi: 10.1515/fca-2016-0044.

[23]

W. Wei and X. Xiang, Optimal feedback control for a class of nonlinear impulsive evolution equations, Chinese J. Engrg. Math., 23 (2006), 333-342. 

[24]

J. R. WangY. Zhou and W. Wei, Optimal feedback control for semilinear fractional evolution equations in Banach spaces, Syst. Contr. Lett., 61 (2012), 472-476.  doi: 10.1016/j.sysconle.2011.12.009.

[25]

C. XiaoB. Zeng and Z. H. Liu, Feedback control for fractional impulsive evolution systems, Appl. Math. Comput., 268 (2015), 924-936.  doi: 10.1016/j.amc.2015.06.092.

[26]

H. P. YeJ. M. Gao and Y. S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.

[27]

B. Zeng, Feedback control for non-stationary 3D Navier-Stokes-Voigt equations, Mathematics and Mechanics of Solids, 25 (2020), 2210-2221.  doi: 10.1177/1081286520926557.

[28]

B. Zeng, Feedback control systems governed by evolution equations, Optimization, 68 (2019), 1223-1243.  doi: 10.1080/02331934.2019.1578358.

[29]

B. Zeng and Z. H. Liu, Existence results for impulsive feedback control systems, Nonlinear Analysis: Hybrid Systems, 33 (2019), 1-16.  doi: 10.1016/j.nahs.2019.01.008.

[30]

W. Zhang and M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 39 (2004), 479-493.  doi: 10.1016/S0895-7177(04)90519-5.

[31]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.

[32]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theor., 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.

show all references

References:
[1]

Y.-K. ChangJ. J. Nieto and Z.-H. Zhao, Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal.: Hybrid Systems, 4 (2010), 593-599.  doi: 10.1016/j.nahs.2010.03.006.

[2]

F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003. doi: 10.1007/978-1-4419-9158-4.

[4]

G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Weslwey, 1986.

[5]

A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21593-8.

[6]

M. I. KamenskiiP. NistriV. V. Obukhovskii and P. Zecca, Optimal feedback control for a semilinear evolution equation, J. Optim. Theory Appl., 82 (1994), 503-517.  doi: 10.1007/BF02192215.

[7]

M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications 7, 2001. doi: 10.1515/9783110870893.

[8]

N. Kosmatov, Initial value problems of fractional order with fractional impulsive conditions, Results. Math., 63 (2013), 1289-1310.  doi: 10.1007/s00025-012-0269-3.

[9]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, in North-Holland Mathematics Studies, vol. 204, Elservier Science B.V., Amsterdam, (2006).

[10]

X. J. Li and J. M. Yong, Optimal Control Theory for infinite Dimensional Systems, Birkhäuser, Boster, 1995. doi: 10.1007/978-1-4612-4260-4.

[11]

Z. Liu and X. Li, Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1362-1373.  doi: 10.1016/j.cnsns.2012.10.010.

[12]

Z. LiuX. Li and J. Sun, Controllability of nonlinear fractional impulsive evolution systems, J. Int. Equ. Appl., 25 (2013), 395-405.  doi: 10.1216/JIE-2013-25-3-395.

[13]

Z. LiuS. Zeng and D. Motreanu, Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.  doi: 10.1016/j.jde.2016.01.012.

[14]

A. L. Mees, Dynamics of Feedback Systems, John Wiley & Sons, Ltd., New York, 1981.

[15]

B. M. Miller and E. Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003. doi: 10.1007/978-1-4615-0095-7.

[16]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013. doi: 10.1007/978-1-4614-4232-5.

[17]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[18] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. 
[19]

R. SakthivelY. Ren and N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451-1459.  doi: 10.1016/j.camwa.2011.04.040.

[20]

X. J. Wang and C. Z. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equation, Electronic Journal of Qualitative Theory of Differential Equations, (2011), 1–15. doi: 10.14232/ejqtde.2011.1.3.

[21]

J. R. WangM. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-362.  doi: 10.4310/DPDE.2011.v8.n4.a3.

[22]

J. R. WangM. Fečkan and Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831.  doi: 10.1515/fca-2016-0044.

[23]

W. Wei and X. Xiang, Optimal feedback control for a class of nonlinear impulsive evolution equations, Chinese J. Engrg. Math., 23 (2006), 333-342. 

[24]

J. R. WangY. Zhou and W. Wei, Optimal feedback control for semilinear fractional evolution equations in Banach spaces, Syst. Contr. Lett., 61 (2012), 472-476.  doi: 10.1016/j.sysconle.2011.12.009.

[25]

C. XiaoB. Zeng and Z. H. Liu, Feedback control for fractional impulsive evolution systems, Appl. Math. Comput., 268 (2015), 924-936.  doi: 10.1016/j.amc.2015.06.092.

[26]

H. P. YeJ. M. Gao and Y. S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.  doi: 10.1016/j.jmaa.2006.05.061.

[27]

B. Zeng, Feedback control for non-stationary 3D Navier-Stokes-Voigt equations, Mathematics and Mechanics of Solids, 25 (2020), 2210-2221.  doi: 10.1177/1081286520926557.

[28]

B. Zeng, Feedback control systems governed by evolution equations, Optimization, 68 (2019), 1223-1243.  doi: 10.1080/02331934.2019.1578358.

[29]

B. Zeng and Z. H. Liu, Existence results for impulsive feedback control systems, Nonlinear Analysis: Hybrid Systems, 33 (2019), 1-16.  doi: 10.1016/j.nahs.2019.01.008.

[30]

W. Zhang and M. Fan, Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 39 (2004), 479-493.  doi: 10.1016/S0895-7177(04)90519-5.

[31]

Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.  doi: 10.1016/j.camwa.2009.06.026.

[32]

Y. ZhouV. Vijayakumar and R. Murugesu, Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theor., 4 (2015), 507-524.  doi: 10.3934/eect.2015.4.507.

[1]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021021

[2]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013

[3]

Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1145-1185. doi: 10.3934/dcdss.2020068

[4]

Shakir Sh. Yusubov, Elimhan N. Mahmudov. Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021182

[5]

Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027

[6]

Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023

[7]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[8]

Meng Zhang, Kaiyuan Liu, Lansun Chen, Zeyu Li. State feedback impulsive control of computer worm and virus with saturated incidence. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1465-1478. doi: 10.3934/mbe.2018067

[9]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272

[10]

H. T. Liu. Impulsive effects on the existence of solutions for a fast diffusion equation. Conference Publications, 2001, 2001 (Special) : 248-253. doi: 10.3934/proc.2001.2001.248

[11]

Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad, Saed F. Mallak, Hussam Alrabaiah. Lyapunov type inequality in the frame of generalized Caputo derivatives. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2335-2355. doi: 10.3934/dcdss.2020212

[12]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations and Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[13]

Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030

[14]

Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917

[15]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021026

[16]

Abdelkarim Kelleche, Nasser-Eddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations and Control Theory, 2018, 7 (4) : 599-616. doi: 10.3934/eect.2018029

[17]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[18]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[19]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[20]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (385)
  • HTML views (484)
  • Cited by (0)

Other articles
by authors

[Back to Top]