-
Previous Article
Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity
- EECT Home
- This Issue
-
Next Article
Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces
Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives
Guangxi University for Nationalities, Faculty of Mathematics and Physics, Nanning 530006, Guangxi Province, P. R. China |
The goal of this paper is to provide systematic approaches to study the feedback control systems governed by fractional impulsive delay evolution equations involving Caputo fractional derivatives in separable reflexive Banach spaces. This work is a continuation of previous work. We firstly give an existence result of mild solutions for the equations by applying the Banach's fixed point theorem and the Leray-Schauder alternative fixed point theorem. Next, by using the Filippove theorem and the Cesari property, we obtain the existence result of feasible pairs for the feedback control system. Finally, some applications are given to illustrate our main results.
References:
[1] |
Y.-K. Chang, J. J. Nieto and Z.-H. Zhao,
Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal.: Hybrid Systems, 4 (2010), 593-599.
doi: 10.1016/j.nahs.2010.03.006. |
[2] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[3] |
Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
doi: 10.1007/978-1-4419-9158-4. |
[4] |
G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Weslwey, 1986. Google Scholar |
[5] |
A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21593-8. |
[6] |
M. I. Kamenskii, P. Nistri, V. V. Obukhovskii and P. Zecca,
Optimal feedback control for a semilinear evolution equation, J. Optim. Theory Appl., 82 (1994), 503-517.
doi: 10.1007/BF02192215. |
[7] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications 7, 2001.
doi: 10.1515/9783110870893. |
[8] |
N. Kosmatov,
Initial value problems of fractional order with fractional impulsive conditions, Results. Math., 63 (2013), 1289-1310.
doi: 10.1007/s00025-012-0269-3. |
[9] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, in North-Holland Mathematics Studies, vol. 204, Elservier Science B.V., Amsterdam, (2006). |
[10] |
X. J. Li and J. M. Yong, Optimal Control Theory for infinite Dimensional Systems, Birkhäuser, Boster, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[11] |
Z. Liu and X. Li,
Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1362-1373.
doi: 10.1016/j.cnsns.2012.10.010. |
[12] |
Z. Liu, X. Li and J. Sun,
Controllability of nonlinear fractional impulsive evolution systems, J. Int. Equ. Appl., 25 (2013), 395-405.
doi: 10.1216/JIE-2013-25-3-395. |
[13] |
Z. Liu, S. Zeng and D. Motreanu,
Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.
doi: 10.1016/j.jde.2016.01.012. |
[14] |
A. L. Mees, Dynamics of Feedback Systems, John Wiley & Sons, Ltd., New York, 1981. |
[15] |
B. M. Miller and E. Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003.
doi: 10.1007/978-1-4615-0095-7. |
[16] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[18] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
![]() |
[19] |
R. Sakthivel, Y. Ren and N. I. Mahmudov,
On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451-1459.
doi: 10.1016/j.camwa.2011.04.040. |
[20] |
X. J. Wang and C. Z. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equation, Electronic Journal of Qualitative Theory of Differential Equations, (2011), 1–15.
doi: 10.14232/ejqtde.2011.1.3. |
[21] |
J. R. Wang, M. Fečkan and Y. Zhou,
On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-362.
doi: 10.4310/DPDE.2011.v8.n4.a3. |
[22] |
J. R. Wang, M. Fečkan and Y. Zhou,
A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831.
doi: 10.1515/fca-2016-0044. |
[23] |
W. Wei and X. Xiang,
Optimal feedback control for a class of nonlinear impulsive evolution equations, Chinese J. Engrg. Math., 23 (2006), 333-342.
|
[24] |
J. R. Wang, Y. Zhou and W. Wei,
Optimal feedback control for semilinear fractional evolution equations in Banach spaces, Syst. Contr. Lett., 61 (2012), 472-476.
doi: 10.1016/j.sysconle.2011.12.009. |
[25] |
C. Xiao, B. Zeng and Z. H. Liu,
Feedback control for fractional impulsive evolution systems, Appl. Math. Comput., 268 (2015), 924-936.
doi: 10.1016/j.amc.2015.06.092. |
[26] |
H. P. Ye, J. M. Gao and Y. S. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[27] |
B. Zeng,
Feedback control for non-stationary 3D Navier-Stokes-Voigt equations, Mathematics and Mechanics of Solids, 25 (2020), 2210-2221.
doi: 10.1177/1081286520926557. |
[28] |
B. Zeng,
Feedback control systems governed by evolution equations, Optimization, 68 (2019), 1223-1243.
doi: 10.1080/02331934.2019.1578358. |
[29] |
B. Zeng and Z. H. Liu,
Existence results for impulsive feedback control systems, Nonlinear Analysis: Hybrid Systems, 33 (2019), 1-16.
doi: 10.1016/j.nahs.2019.01.008. |
[30] |
W. Zhang and M. Fan,
Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 39 (2004), 479-493.
doi: 10.1016/S0895-7177(04)90519-5. |
[31] |
Y. Zhou and F. Jiao,
Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.
doi: 10.1016/j.camwa.2009.06.026. |
[32] |
Y. Zhou, V. Vijayakumar and R. Murugesu,
Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theor., 4 (2015), 507-524.
doi: 10.3934/eect.2015.4.507. |
show all references
References:
[1] |
Y.-K. Chang, J. J. Nieto and Z.-H. Zhao,
Existence results for a nondensely-defined impulsive neutral differential equation with state-dependent delay, Nonlinear Anal.: Hybrid Systems, 4 (2010), 593-599.
doi: 10.1016/j.nahs.2010.03.006. |
[2] |
F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[3] |
Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
doi: 10.1007/978-1-4419-9158-4. |
[4] |
G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Weslwey, 1986. Google Scholar |
[5] |
A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
doi: 10.1007/978-0-387-21593-8. |
[6] |
M. I. Kamenskii, P. Nistri, V. V. Obukhovskii and P. Zecca,
Optimal feedback control for a semilinear evolution equation, J. Optim. Theory Appl., 82 (1994), 503-517.
doi: 10.1007/BF02192215. |
[7] |
M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Series in Nonlinear Analysis and Applications 7, 2001.
doi: 10.1515/9783110870893. |
[8] |
N. Kosmatov,
Initial value problems of fractional order with fractional impulsive conditions, Results. Math., 63 (2013), 1289-1310.
doi: 10.1007/s00025-012-0269-3. |
[9] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, in North-Holland Mathematics Studies, vol. 204, Elservier Science B.V., Amsterdam, (2006). |
[10] |
X. J. Li and J. M. Yong, Optimal Control Theory for infinite Dimensional Systems, Birkhäuser, Boster, 1995.
doi: 10.1007/978-1-4612-4260-4. |
[11] |
Z. Liu and X. Li,
Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1362-1373.
doi: 10.1016/j.cnsns.2012.10.010. |
[12] |
Z. Liu, X. Li and J. Sun,
Controllability of nonlinear fractional impulsive evolution systems, J. Int. Equ. Appl., 25 (2013), 395-405.
doi: 10.1216/JIE-2013-25-3-395. |
[13] |
Z. Liu, S. Zeng and D. Motreanu,
Evolutionary problems driven by variational inequalities, J. Differential Equations, 260 (2016), 6787-6799.
doi: 10.1016/j.jde.2016.01.012. |
[14] |
A. L. Mees, Dynamics of Feedback Systems, John Wiley & Sons, Ltd., New York, 1981. |
[15] |
B. M. Miller and E. Ya. Rubinovich, Impulsive Control in Continuous and Discrete-Continuous Systems, Kluwer Academic/Plenum Publishers, New York, 2003.
doi: 10.1007/978-1-4615-0095-7. |
[16] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4232-5. |
[17] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[18] |
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
![]() |
[19] |
R. Sakthivel, Y. Ren and N. I. Mahmudov,
On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451-1459.
doi: 10.1016/j.camwa.2011.04.040. |
[20] |
X. J. Wang and C. Z. Bai, Periodic boundary value problems for nonlinear impulsive fractional differential equation, Electronic Journal of Qualitative Theory of Differential Equations, (2011), 1–15.
doi: 10.14232/ejqtde.2011.1.3. |
[21] |
J. R. Wang, M. Fečkan and Y. Zhou,
On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 8 (2011), 345-362.
doi: 10.4310/DPDE.2011.v8.n4.a3. |
[22] |
J. R. Wang, M. Fečkan and Y. Zhou,
A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806-831.
doi: 10.1515/fca-2016-0044. |
[23] |
W. Wei and X. Xiang,
Optimal feedback control for a class of nonlinear impulsive evolution equations, Chinese J. Engrg. Math., 23 (2006), 333-342.
|
[24] |
J. R. Wang, Y. Zhou and W. Wei,
Optimal feedback control for semilinear fractional evolution equations in Banach spaces, Syst. Contr. Lett., 61 (2012), 472-476.
doi: 10.1016/j.sysconle.2011.12.009. |
[25] |
C. Xiao, B. Zeng and Z. H. Liu,
Feedback control for fractional impulsive evolution systems, Appl. Math. Comput., 268 (2015), 924-936.
doi: 10.1016/j.amc.2015.06.092. |
[26] |
H. P. Ye, J. M. Gao and Y. S. Ding,
A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075-1081.
doi: 10.1016/j.jmaa.2006.05.061. |
[27] |
B. Zeng,
Feedback control for non-stationary 3D Navier-Stokes-Voigt equations, Mathematics and Mechanics of Solids, 25 (2020), 2210-2221.
doi: 10.1177/1081286520926557. |
[28] |
B. Zeng,
Feedback control systems governed by evolution equations, Optimization, 68 (2019), 1223-1243.
doi: 10.1080/02331934.2019.1578358. |
[29] |
B. Zeng and Z. H. Liu,
Existence results for impulsive feedback control systems, Nonlinear Analysis: Hybrid Systems, 33 (2019), 1-16.
doi: 10.1016/j.nahs.2019.01.008. |
[30] |
W. Zhang and M. Fan,
Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays, Math. Comput. Model., 39 (2004), 479-493.
doi: 10.1016/S0895-7177(04)90519-5. |
[31] |
Y. Zhou and F. Jiao,
Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59 (2010), 1063-1077.
doi: 10.1016/j.camwa.2009.06.026. |
[32] |
Y. Zhou, V. Vijayakumar and R. Murugesu,
Controllability for fractional evolution inclusions without compactness, Evol. Equ. Control Theor., 4 (2015), 507-524.
doi: 10.3934/eect.2015.4.507. |
[1] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[2] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[3] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[4] |
María J. Garrido-Atienza, Bohdan Maslowski, Jana Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088 |
[5] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[6] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
[7] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[8] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020027 |
[9] |
Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931 |
[10] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[11] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[12] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[13] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[14] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[15] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[16] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[17] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[18] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[19] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[20] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]