-
Previous Article
Conditional regularity for the 3D Navier-Stokes equations in terms of the middle eigenvalue of the strain tensor
- EECT Home
- This Issue
-
Next Article
New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $
A canonical model of the one-dimensional dynamical Dirac system with boundary control
1. | St. Petersburg Department of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023 Russia |
2. | St. Petersburg State University, 7–9 Universitetskaya nab., St. Petersburg, 199034 Russia |
$ \Sigma $ |
$ \begin{align*} & iu_t+i\sigma_{\!_3}\, u_x+Vu = 0, \, \, \, \, x, t>0;\, \, \, u|_{t = 0} = 0, \, \, x>0;\, \, \, \, u_1|_{x = 0} = f, \, \, t>0, \end{align*} $ |
$ \sigma_{\!_3} = \begin{pmatrix}1&0 \\ 0&-1\end{pmatrix} $ |
$ V = \begin{pmatrix}0&p\\ \bar p&0\end{pmatrix} $ |
$ p = p(x) $ |
$ u = \begin{pmatrix}u_1^f(x, t) \\ u_2^f(x, t)\end{pmatrix} $ |
$ \mathscr H = L_2(\mathbb R_+;\mathbb C^2) $ |
$ f\in\mathscr F = L_2([0, \infty);\mathbb C) $ |
$ \Sigma $ |
$ \mathscr U = {\rm span}_{t>0}\{u^f(\cdot, t)\, |\, \, f\in \mathscr F\} $ |
$ \mathscr H $ |
$ \Sigma_u $ |
$ \Sigma_a $ |
$ L_2(\mathbb R_+;\mathbb C) $ |
$ \Sigma_u $ |
$ \Sigma_a $ |
$ \overline{\mathscr U} $ |
$ \mathscr U^t = \{u^f(\cdot, t)\, |\, \, f\in \mathscr F\} $ |
$ \Sigma_a $ |
$ \Sigma $ |
$ \Sigma $ |
$ \Sigma_a $ |
References:
[1] |
M. I. Belishev,
A unitary invariant of a semi-bounded operator in reconstruction of manifolds, Journal of Operator Theory, 69 (2013), 299-326.
doi: 10.7900/jot.2010oct22.1925. |
[2] |
M. I. Belishev, Boundary control method, in Encyclopedia of Applied and Computational Mathematics, (2015), 142–146.
doi: 10.1007/978-3-540-70529-1_7. |
[3] |
M. I. Belishev,
Boundary control and tomography of Riemannian manifolds, Russian Mathematical Surveys, 72 (2017), 581-644.
doi: 10.4213/rm9768. |
[4] |
M. I. Belishev and V. S. Mikhaylov, Inverse problem for one-dimensional dynamical Dirac system (BC-method), Inverse Problems, 30 (2014), 125013, 1–26.
doi: 10.1088/0266-5611/30/12/125013. |
[5] |
M. I. Belishev and S. A. Simonov,
Wave model of the Sturm-Liouville operator on the half-line, St. Petersburg Math. J., 29 (2018), 227-248.
doi: 10.1090/spmj/1491. |
[6] |
M. I. Belishev and S. A. Simonov,
A wave model of metric spaces, Functional Analysis and Its Applications, 53 (2019), 79-85.
doi: 10.1134/S0016266319020011. |
[7] |
M. I. Belishev and S. A. Simonov, A wave model of metric space with measure, Sbornik: Mathematics, 211 (2020), 521-538. Google Scholar |
[8] |
M. I. Belishev and S. A. Simonov, On evolutionary first-order dynamical system with boundary control, Zapiski Nauchnykh Seminarov POMI, in Russian, 483 (2019), 41–54. |
[9] |
I. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. of Monographs No. 24, Amer. Math. Soc, Providence. Rhode Island, 1970. |
[10] |
R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, New-York: McGraw-Hill, 1969. |
show all references
References:
[1] |
M. I. Belishev,
A unitary invariant of a semi-bounded operator in reconstruction of manifolds, Journal of Operator Theory, 69 (2013), 299-326.
doi: 10.7900/jot.2010oct22.1925. |
[2] |
M. I. Belishev, Boundary control method, in Encyclopedia of Applied and Computational Mathematics, (2015), 142–146.
doi: 10.1007/978-3-540-70529-1_7. |
[3] |
M. I. Belishev,
Boundary control and tomography of Riemannian manifolds, Russian Mathematical Surveys, 72 (2017), 581-644.
doi: 10.4213/rm9768. |
[4] |
M. I. Belishev and V. S. Mikhaylov, Inverse problem for one-dimensional dynamical Dirac system (BC-method), Inverse Problems, 30 (2014), 125013, 1–26.
doi: 10.1088/0266-5611/30/12/125013. |
[5] |
M. I. Belishev and S. A. Simonov,
Wave model of the Sturm-Liouville operator on the half-line, St. Petersburg Math. J., 29 (2018), 227-248.
doi: 10.1090/spmj/1491. |
[6] |
M. I. Belishev and S. A. Simonov,
A wave model of metric spaces, Functional Analysis and Its Applications, 53 (2019), 79-85.
doi: 10.1134/S0016266319020011. |
[7] |
M. I. Belishev and S. A. Simonov, A wave model of metric space with measure, Sbornik: Mathematics, 211 (2020), 521-538. Google Scholar |
[8] |
M. I. Belishev and S. A. Simonov, On evolutionary first-order dynamical system with boundary control, Zapiski Nauchnykh Seminarov POMI, in Russian, 483 (2019), 41–54. |
[9] |
I. C. Gohberg and M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Transl. of Monographs No. 24, Amer. Math. Soc, Providence. Rhode Island, 1970. |
[10] |
R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical System Theory, New-York: McGraw-Hill, 1969. |
[1] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[2] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[3] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[4] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[5] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[6] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[7] |
Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393 |
[8] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[9] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[10] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[11] |
Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113 |
[12] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure & Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[13] |
Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201 |
[14] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[15] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[16] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[17] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[18] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[19] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[20] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
2019 Impact Factor: 0.953
Tools
Metrics
Other articles
by authors
[Back to Top]