• Previous Article
    The method of extremal shift in control problems for evolution variational inequalities under disturbances
  • EECT Home
  • This Issue
  • Next Article
    Exact boundary null controllability for a coupled system of plate equations with variable coefficients
doi: 10.3934/eect.2021006
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

$ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations

1. 

Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina 842 48, Bratislava, Slovakia

2. 

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49,814 73 Bratislava, Slovakia

3. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, P. R. China

4. 

College of Science, Guizhou Institute of Technology, Guiyang, Guizhou 550025, P. R. China

5. 

School of Mathematical Sciences, Qufu Normal University, , Qufu, Shandong 273165, P. R. China

* Corresponding author: JinRong Wang

Received  September 2020 Revised  November 2020 Early access January 2021

In this paper, we study $ (\omega,\mathbb{T}) $-periodic impulsive evolution equations via the operator semigroups theory in Banach spaces $ X $, where $ \mathbb{T}: X\rightarrow X $ is a linear isomorphism. Existence and uniqueness of $ (\omega,\mathbb{T}) $-periodic solutions results for linear and semilinear problems are obtained by Fredholm alternative theorem and fixed point theorems, which extend the related results for periodic impulsive differential equations.

Citation: Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, doi: 10.3934/eect.2021006
References:
[1]

N. U. AhmedK. L. Teo and S. H. Hou, Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis: TMA, 54 (2003), 907-925.  doi: 10.1016/S0362-546X(03)00117-2.  Google Scholar

[2]

E. Alvarez, A. Gómez and M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., (2018), 16–24. doi: 10.14232/ejqtde.2018.1.16.  Google Scholar

[3]

M. AgaoglouM. Fečkan and A. Panagiotidou, Existence and uniqueness of $(\omega, c)$-periodic solutions of semilinear evolution equations, Int. J. Dynamical Systems and Differential Equations, 10 (2020), 149-166.  doi: 10.1504/IJDSDE.2020.106027.  Google Scholar

[4]

E. Alvarez, S. Castillo and M. Pinto, $(\omega, c)-$Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells, Bound. Value Prob., (2019), 106–126. doi: 10.1186/s13661-019-1217-x.  Google Scholar

[5]

E. AlvarezS. Castillo and M. Pinto, $(\omega, c)-$asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Meth. Appl. Sci., 43 (2020), 305-319.  doi: 10.1002/mma.5880.  Google Scholar

[6]

D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, vol. 28. Singapore, World Scientifc, 1995. doi: 10.1142/9789812831804.  Google Scholar

[7]

D. Bainov and P. Simeonov, Oscillation Theory of Impulsive Differential Equations, Interna-tional Publications, 1998.  Google Scholar

[8]

C. Cooke and J. Kroll, The existence of periodic solutions to certain impulsive differential equations, Comput. Math. Appl., 44 (2002), 667-676.  doi: 10.1016/S0898-1221(02)00181-5.  Google Scholar

[9]

X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discret. Contin. Dyn. Syst., 36 (2016), 633-652.   Google Scholar

[10]

M. FečkanJ. Wang and Y. Zhou, Existence of periodic solutions for nonlinear evolution equations with non- instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.   Google Scholar

[11]

M. FečkanR. Ma and B. Thompson, Forced symmetric oscillations, Bull. Belg. Math. Soc., 14 (2007), 73-85.  doi: 10.36045/bbms/1172852245.  Google Scholar

[12]

Y. LiF. CongZ. Lin and W. liu, Periodic solutions for evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 275-293.  doi: 10.1016/S0362-546X(97)00626-3.  Google Scholar

[13]

X. LiB. Martin and C. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178.  doi: 10.1016/j.automatica.2014.11.009.  Google Scholar

[14]

M. LiJ. Wang and M. Fečkan, $(\omega, c)$-periodic solutions for impulsive differential systems, Communications Mathematical Analysis, 21 (2018), 35-46.   Google Scholar

[15]

K. LiuJ. WangD. O'Regan and M. Fečkan, A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 155-177.  doi: 10.1007/s00009-020-01574-8.  Google Scholar

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. doi: 10.1142/9789812798664.  Google Scholar

[18]

C. Wang, Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2828-2842.  doi: 10.1016/j.cnsns.2013.12.038.  Google Scholar

[19]

J. Wang and M. Fečkan, A general class of impulsive evolution equations, Topol. Meth. Nonlinear Anal., 46 (2015), 915-934.   Google Scholar

[20]

J. Wang, X. Xiang and W. Wei, Linear impulsive periodic system with time-varying generating operators on Banach space, Adv. Differ. Equ., (2007), 26196, 16 pp. doi: 10.1155/2007/26196.  Google Scholar

show all references

References:
[1]

N. U. AhmedK. L. Teo and S. H. Hou, Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis: TMA, 54 (2003), 907-925.  doi: 10.1016/S0362-546X(03)00117-2.  Google Scholar

[2]

E. Alvarez, A. Gómez and M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., (2018), 16–24. doi: 10.14232/ejqtde.2018.1.16.  Google Scholar

[3]

M. AgaoglouM. Fečkan and A. Panagiotidou, Existence and uniqueness of $(\omega, c)$-periodic solutions of semilinear evolution equations, Int. J. Dynamical Systems and Differential Equations, 10 (2020), 149-166.  doi: 10.1504/IJDSDE.2020.106027.  Google Scholar

[4]

E. Alvarez, S. Castillo and M. Pinto, $(\omega, c)-$Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells, Bound. Value Prob., (2019), 106–126. doi: 10.1186/s13661-019-1217-x.  Google Scholar

[5]

E. AlvarezS. Castillo and M. Pinto, $(\omega, c)-$asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Meth. Appl. Sci., 43 (2020), 305-319.  doi: 10.1002/mma.5880.  Google Scholar

[6]

D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, vol. 28. Singapore, World Scientifc, 1995. doi: 10.1142/9789812831804.  Google Scholar

[7]

D. Bainov and P. Simeonov, Oscillation Theory of Impulsive Differential Equations, Interna-tional Publications, 1998.  Google Scholar

[8]

C. Cooke and J. Kroll, The existence of periodic solutions to certain impulsive differential equations, Comput. Math. Appl., 44 (2002), 667-676.  doi: 10.1016/S0898-1221(02)00181-5.  Google Scholar

[9]

X. Chang and Y. Li, Rotating periodic solutions of second order dissipative dynamical systems, Discret. Contin. Dyn. Syst., 36 (2016), 633-652.   Google Scholar

[10]

M. FečkanJ. Wang and Y. Zhou, Existence of periodic solutions for nonlinear evolution equations with non- instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.   Google Scholar

[11]

M. FečkanR. Ma and B. Thompson, Forced symmetric oscillations, Bull. Belg. Math. Soc., 14 (2007), 73-85.  doi: 10.36045/bbms/1172852245.  Google Scholar

[12]

Y. LiF. CongZ. Lin and W. liu, Periodic solutions for evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 275-293.  doi: 10.1016/S0362-546X(97)00626-3.  Google Scholar

[13]

X. LiB. Martin and C. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178.  doi: 10.1016/j.automatica.2014.11.009.  Google Scholar

[14]

M. LiJ. Wang and M. Fečkan, $(\omega, c)$-periodic solutions for impulsive differential systems, Communications Mathematical Analysis, 21 (2018), 35-46.   Google Scholar

[15]

K. LiuJ. WangD. O'Regan and M. Fečkan, A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 155-177.  doi: 10.1007/s00009-020-01574-8.  Google Scholar

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. doi: 10.1142/9789812798664.  Google Scholar

[18]

C. Wang, Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2828-2842.  doi: 10.1016/j.cnsns.2013.12.038.  Google Scholar

[19]

J. Wang and M. Fečkan, A general class of impulsive evolution equations, Topol. Meth. Nonlinear Anal., 46 (2015), 915-934.   Google Scholar

[20]

J. Wang, X. Xiang and W. Wei, Linear impulsive periodic system with time-varying generating operators on Banach space, Adv. Differ. Equ., (2007), 26196, 16 pp. doi: 10.1155/2007/26196.  Google Scholar

[1]

Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations & Control Theory, 2021, 10 (4) : 733-748. doi: 10.3934/eect.2020089

[2]

E. Compaan. A note on global existence for the Zakharov system on $ \mathbb{T} $. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2473-2489. doi: 10.3934/cpaa.2019112

[3]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ Ⅱ: Discrete torus bifurcations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1847-1874. doi: 10.3934/cpaa.2020081

[4]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231

[5]

Yang Liu, Chunyou Sun. Inviscid limit for the damped generalized incompressible Navier-Stokes equations on $ \mathbb{T}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (12) : 4383-4408. doi: 10.3934/dcdss.2021124

[6]

Ziqing Yuan, Jianshe Yu. Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3285-3303. doi: 10.3934/dcdss.2020281

[7]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[8]

Pablo Amster, Alberto Déboli, Manuel Pinto. Hartman and Nirenberg type results for systems of delay differential equations under $ (\omega,Q) $-periodic conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021171

[9]

Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021017

[10]

Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239

[11]

Changguang Dong, Adam Kanigowski. Rigidity of a class of smooth singular flows on $ \mathbb{T}^2 $. Journal of Modern Dynamics, 2020, 16: 37-57. doi: 10.3934/jmd.2020002

[12]

Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $ \mathbb{T}^3 $. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116

[13]

Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2022, 27 (1) : 469-486. doi: 10.3934/dcdsb.2021051

[14]

Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068

[15]

Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137

[16]

Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030

[17]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[18]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[19]

Naoki Shioji, Kohtaro Watanabe. Uniqueness of positive radial solutions of the Brezis-Nirenberg problem on thin annular domains on $ {\mathbb S}^n $ and symmetry breaking bifurcations. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4727-4770. doi: 10.3934/cpaa.2020210

[20]

Claudianor O. Alves, Vincenzo Ambrosio, Teresa Isernia. Existence, multiplicity and concentration for a class of fractional $ p \& q $ Laplacian problems in $ \mathbb{R} ^{N} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2009-2045. doi: 10.3934/cpaa.2019091

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (231)
  • HTML views (382)
  • Cited by (0)

Other articles
by authors

[Back to Top]