-
Previous Article
Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative
- EECT Home
- This Issue
-
Next Article
An inverse problem for the pseudo-parabolic equation with p-Laplacian
$ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations
1. | Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina 842 48, Bratislava, Slovakia |
2. | Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49,814 73 Bratislava, Slovakia |
3. | Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, P. R. China |
4. | College of Science, Guizhou Institute of Technology, Guiyang, Guizhou 550025, P. R. China |
5. | School of Mathematical Sciences, Qufu Normal University, , Qufu, Shandong 273165, P. R. China |
In this paper, we study $ (\omega,\mathbb{T}) $-periodic impulsive evolution equations via the operator semigroups theory in Banach spaces $ X $, where $ \mathbb{T}: X\rightarrow X $ is a linear isomorphism. Existence and uniqueness of $ (\omega,\mathbb{T}) $-periodic solutions results for linear and semilinear problems are obtained by Fredholm alternative theorem and fixed point theorems, which extend the related results for periodic impulsive differential equations.
References:
[1] |
N. U. Ahmed, K. L. Teo and S. H. Hou,
Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis: TMA, 54 (2003), 907-925.
doi: 10.1016/S0362-546X(03)00117-2. |
[2] |
E. Alvarez, A. Gómez and M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., (2018), 16–24.
doi: 10.14232/ejqtde.2018.1.16. |
[3] |
M. Agaoglou, M. Fečkan and A. Panagiotidou,
Existence and uniqueness of $(\omega, c)$-periodic solutions of semilinear evolution equations, Int. J. Dynamical Systems and Differential Equations, 10 (2020), 149-166.
doi: 10.1504/IJDSDE.2020.106027. |
[4] |
E. Alvarez, S. Castillo and M. Pinto, $(\omega, c)-$Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells, Bound. Value Prob., (2019), 106–126.
doi: 10.1186/s13661-019-1217-x. |
[5] |
E. Alvarez, S. Castillo and M. Pinto,
$(\omega, c)-$asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Meth. Appl. Sci., 43 (2020), 305-319.
doi: 10.1002/mma.5880. |
[6] |
D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, vol. 28. Singapore, World Scientifc, 1995.
doi: 10.1142/9789812831804. |
[7] |
D. Bainov and P. Simeonov, Oscillation Theory of Impulsive Differential Equations, Interna-tional Publications, 1998. |
[8] |
C. Cooke and J. Kroll,
The existence of periodic solutions to certain impulsive differential equations, Comput. Math. Appl., 44 (2002), 667-676.
doi: 10.1016/S0898-1221(02)00181-5. |
[9] |
X. Chang and Y. Li,
Rotating periodic solutions of second order dissipative dynamical systems, Discret. Contin. Dyn. Syst., 36 (2016), 633-652.
|
[10] |
M. Fečkan, J. Wang and Y. Zhou,
Existence of periodic solutions for nonlinear evolution equations with non- instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.
|
[11] |
M. Fečkan, R. Ma and B. Thompson,
Forced symmetric oscillations, Bull. Belg. Math. Soc., 14 (2007), 73-85.
doi: 10.36045/bbms/1172852245. |
[12] |
Y. Li, F. Cong, Z. Lin and W. liu,
Periodic solutions for evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 275-293.
doi: 10.1016/S0362-546X(97)00626-3. |
[13] |
X. Li, B. Martin and C. Wang,
Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178.
doi: 10.1016/j.automatica.2014.11.009. |
[14] |
M. Li, J. Wang and M. Fečkan,
$(\omega, c)$-periodic solutions for impulsive differential systems, Communications Mathematical Analysis, 21 (2018), 35-46.
|
[15] |
K. Liu, J. Wang, D. O'Regan and M. Fečkan,
A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 155-177.
doi: 10.1007/s00009-020-01574-8. |
[16] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
doi: 10.1142/9789812798664. |
[18] |
C. Wang,
Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2828-2842.
doi: 10.1016/j.cnsns.2013.12.038. |
[19] |
J. Wang and M. Fečkan,
A general class of impulsive evolution equations, Topol. Meth. Nonlinear Anal., 46 (2015), 915-934.
|
[20] |
J. Wang, X. Xiang and W. Wei, Linear impulsive periodic system with time-varying generating operators on Banach space, Adv. Differ. Equ., (2007), 26196, 16 pp.
doi: 10.1155/2007/26196. |
show all references
References:
[1] |
N. U. Ahmed, K. L. Teo and S. H. Hou,
Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis: TMA, 54 (2003), 907-925.
doi: 10.1016/S0362-546X(03)00117-2. |
[2] |
E. Alvarez, A. Gómez and M. Pinto, $(\omega, c)$-periodic functions and mild solutions to abstract fractional integro-differential equations, Electron. J. Qual. Theory Differ. Equ., (2018), 16–24.
doi: 10.14232/ejqtde.2018.1.16. |
[3] |
M. Agaoglou, M. Fečkan and A. Panagiotidou,
Existence and uniqueness of $(\omega, c)$-periodic solutions of semilinear evolution equations, Int. J. Dynamical Systems and Differential Equations, 10 (2020), 149-166.
doi: 10.1504/IJDSDE.2020.106027. |
[4] |
E. Alvarez, S. Castillo and M. Pinto, $(\omega, c)-$Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells, Bound. Value Prob., (2019), 106–126.
doi: 10.1186/s13661-019-1217-x. |
[5] |
E. Alvarez, S. Castillo and M. Pinto,
$(\omega, c)-$asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells, Math. Meth. Appl. Sci., 43 (2020), 305-319.
doi: 10.1002/mma.5880. |
[6] |
D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series on Advances in Mathematics for Applied Sciences, vol. 28. Singapore, World Scientifc, 1995.
doi: 10.1142/9789812831804. |
[7] |
D. Bainov and P. Simeonov, Oscillation Theory of Impulsive Differential Equations, Interna-tional Publications, 1998. |
[8] |
C. Cooke and J. Kroll,
The existence of periodic solutions to certain impulsive differential equations, Comput. Math. Appl., 44 (2002), 667-676.
doi: 10.1016/S0898-1221(02)00181-5. |
[9] |
X. Chang and Y. Li,
Rotating periodic solutions of second order dissipative dynamical systems, Discret. Contin. Dyn. Syst., 36 (2016), 633-652.
|
[10] |
M. Fečkan, J. Wang and Y. Zhou,
Existence of periodic solutions for nonlinear evolution equations with non- instantaneous impulses, Nonauton. Dyn. Syst., 1 (2014), 93-101.
|
[11] |
M. Fečkan, R. Ma and B. Thompson,
Forced symmetric oscillations, Bull. Belg. Math. Soc., 14 (2007), 73-85.
doi: 10.36045/bbms/1172852245. |
[12] |
Y. Li, F. Cong, Z. Lin and W. liu,
Periodic solutions for evolution equations, Nonlinear Analysis: Theory, Methods and Applications, 36 (1999), 275-293.
doi: 10.1016/S0362-546X(97)00626-3. |
[13] |
X. Li, B. Martin and C. Wang,
Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178.
doi: 10.1016/j.automatica.2014.11.009. |
[14] |
M. Li, J. Wang and M. Fečkan,
$(\omega, c)$-periodic solutions for impulsive differential systems, Communications Mathematical Analysis, 21 (2018), 35-46.
|
[15] |
K. Liu, J. Wang, D. O'Regan and M. Fečkan,
A new class of $(\omega, c)$-periodic non-instantaneous impulsive differential equations, Mediterr. J. Math., 17 (2020), 155-177.
doi: 10.1007/s00009-020-01574-8. |
[16] |
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[17] |
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.
doi: 10.1142/9789812798664. |
[18] |
C. Wang,
Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2828-2842.
doi: 10.1016/j.cnsns.2013.12.038. |
[19] |
J. Wang and M. Fečkan,
A general class of impulsive evolution equations, Topol. Meth. Nonlinear Anal., 46 (2015), 915-934.
|
[20] |
J. Wang, X. Xiang and W. Wei, Linear impulsive periodic system with time-varying generating operators on Banach space, Adv. Differ. Equ., (2007), 26196, 16 pp.
doi: 10.1155/2007/26196. |
[1] |
Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations and Control Theory, 2021, 10 (4) : 733-748. doi: 10.3934/eect.2020089 |
[2] |
Pablo Amster, Mariel Paula Kuna, Dionicio Santos. Stability, existence and non-existence of $ T $-periodic solutions of nonlinear delayed differential equations with $ \varphi $-Laplacian. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2723-2737. doi: 10.3934/cpaa.2022070 |
[3] |
E. Compaan. A note on global existence for the Zakharov system on $ \mathbb{T} $. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2473-2489. doi: 10.3934/cpaa.2019112 |
[4] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ Ⅱ: Discrete torus bifurcations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1847-1874. doi: 10.3934/cpaa.2020081 |
[5] |
Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231 |
[6] |
Yang Liu, Chunyou Sun. Inviscid limit for the damped generalized incompressible Navier-Stokes equations on $ \mathbb{T}^2 $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4383-4408. doi: 10.3934/dcdss.2021124 |
[7] |
Ziqing Yuan, Jianshe Yu. Existence and multiplicity of positive solutions for a class of quasilinear Schrödinger equations in $ \mathbb R^N $$ ^\diamondsuit $. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3285-3303. doi: 10.3934/dcdss.2020281 |
[8] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[9] |
Pablo Amster, Alberto Déboli, Manuel Pinto. Hartman and Nirenberg type results for systems of delay differential equations under $ (\omega,Q) $-periodic conditions. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3019-3037. doi: 10.3934/dcdsb.2021171 |
[10] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations and Control Theory, 2022, 11 (3) : 621-633. doi: 10.3934/eect.2021017 |
[11] |
Lu Chen, Guozhen Lu, Yansheng Shen. Sharp subcritical Sobolev inequalities and uniqueness of nonnegative solutions to high-order Lane-Emden equations on $ \mathbb{S}^n $. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2799-2817. doi: 10.3934/cpaa.2022073 |
[12] |
Fengshuang Gao, Yuxia Guo. Infinitely many solutions for quasilinear equations with critical exponent and Hardy potential in $ \mathbb{R}^N $. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5591-5616. doi: 10.3934/dcds.2020239 |
[13] |
Qianqian Han, Bo Deng, Xiao-Song Yang. The existence of $ \omega $-limit set for a modified Nosé-Hoover oscillator. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022043 |
[14] |
Changguang Dong, Adam Kanigowski. Rigidity of a class of smooth singular flows on $ \mathbb{T}^2 $. Journal of Modern Dynamics, 2020, 16: 37-57. doi: 10.3934/jmd.2020002 |
[15] |
Gyu Eun Lee. Local wellposedness for the critical nonlinear Schrödinger equation on $ \mathbb{T}^3 $. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2763-2783. doi: 10.3934/dcds.2019116 |
[16] |
Jian-Guo Liu, Zhaoyun Zhang. Existence of global weak solutions of $ p $-Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 469-486. doi: 10.3934/dcdsb.2021051 |
[17] |
Mohamed Karim Hamdani, Lamine Mbarki, Mostafa Allaoui, Omar Darhouche, Dušan D. Repovš. Existence and multiplicity of solutions involving the $ p(x) $-Laplacian equations: On the effect of two nonlocal terms. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022129 |
[18] |
Monica Motta, Caterina Sartori. On ${\mathcal L}^1$ limit solutions in impulsive control. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1201-1218. doi: 10.3934/dcdss.2018068 |
[19] |
Yinbin Deng, Wei Shuai. Sign-changing multi-bump solutions for Kirchhoff-type equations in $\mathbb{R}^3$. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3139-3168. doi: 10.3934/dcds.2018137 |
[20] |
Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030 |
2021 Impact Factor: 1.169
Tools
Metrics
Other articles
by authors
[Back to Top]