• Previous Article
    Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations
  • EECT Home
  • This Issue
  • Next Article
    Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory"
doi: 10.3934/eect.2021008
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Almost periodic type functions and densities

Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, Serbia

* Corresponding author: Marko Kostić

Received  July 2020 Early access January 2021

Fund Project: The author is supported by grant no. 451-03-68/2020/14/200156, Ministry of Science and Technological Development, Republic of Serbia

In this paper, we introduce and analyze the notions of $ \odot_{g} $-almost periodicity and Stepanov $ \odot_{g} $-almost periodicity for functions with values in complex Banach spaces. In order to do that, we use the recently introduced notions of lower and upper (Banach) $ g $-densities. We also analyze uniformly recurrent functions, generalized almost automorphic functions and apply our results in the qualitative analysis of solutions of inhomogeneous abstract integro-differential inclusions. We present plenty of illustrative examples, results of independent interest, questions and unsolved problems.

Citation: Marko Kostić. Almost periodic type functions and densities. Evolution Equations & Control Theory, doi: 10.3934/eect.2021008
References:
[1]

S. Abbas, A note on Weyl pseudo almost automorphic functions and their properties, Math. Sci. (Springer), 6 (2012), 5 pp. doi: 10.1186/2251-7456-6-29.  Google Scholar

[2]

B. Basit, Some problems concerning different types of vector valued almost periodic functions, Dissertationes Math., 338 (1995), 26 pp.  Google Scholar

[3]

B. Basit and H. Güenzler, On spectral criteria for solutions of evolution equations and comments on reduced spectra, Far East J. Math. Sci. (FJMS), 65 (2012), 273-288.   Google Scholar

[4]

M. V. Bebutov, On dynamical systems in the space of continuous functions, Byull. Moskov. Gos. Univ. Mat., 2 (1940), 1-52.   Google Scholar

[5]

A. S. Besicovitch, Almost Periodic Functions, Dover Publications, Inc., New York, 1955.  Google Scholar

[6]

H. Bohr, Zur theorie der fastperiodischen Funktionen Ⅰ; Ⅱ; Ⅲ, Acta Math., 45 (1924), 29–127; H6 (1925), 101–214; H5 (1926), 237–281. doi: 10.1007/BF02395468.  Google Scholar

[7]

H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, New York, N.Y., 1947.  Google Scholar

[8]

L. I. Danilov, The uniform approximation of recurrent functions and almost recurrent functions, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 4 (2013), 36-54.   Google Scholar

[9]

J. de Vries, Elements of Topological Dynamics, Mathematics and its Applications, vol. 257, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8171-4.  Google Scholar

[10]

T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, Cham, 2013. doi: 10.1007/978-3-319-00849-3.  Google Scholar

[11]

H.-S. DingJ. Liang and T.-J. Xiao, Some properties of Stepanov-like almost automorphic functions and applications to abstract evolution equations, Appl. Anal., 88 (2009), 1079-1091.  doi: 10.1080/00036810903156164.  Google Scholar

[12]

H.-S. DingW. Long and G. M. N'Guérékata, Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients, J. Comput. Anal. Appl., 13 (2011), 231-242.   Google Scholar

[13]

H.-S. Ding and S.-M. Wan, Asymptotically almost automorphic solutions of differential equations with piecewise constant argument, Open Math., 15 (2017), 595-610.  doi: 10.1515/math-2017-0051.  Google Scholar

[14]

T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Text in Mathematics, vol. 272, Springer, Cham, 2015. doi: 10.1007/978-3-319-16898-2.  Google Scholar

[15]

K.-J. Engel and R. Nagel, One–Parameter Semigroups for Linear Evolution Equations, Springer–Verlag, New York, 2000.  Google Scholar

[16]

A. M. Fink, Almost Periodic Differential Equations, Springer-Verlag, Berlin-New York, 1974.  Google Scholar

[17]

A. M. Fink, Extensions of almost automorphic sequences, J. Math. Anal. Appl., 27 (1969), 519-523.  doi: 10.1016/0022-247X(69)90132-2.  Google Scholar

[18]

A. M. Fink, Almost Periodic Points in Topological Transformation Semi-groups, Ph.D thesis, Iowa State University, Digital Repository (1960), 44 pp.  Google Scholar

[19]

A. Geroldinger and I. Z. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8962-8.  Google Scholar

[20]

G. GrekosV. Toma and J. Tomanová, A note on uniform or Banach density, Ann. Math. Blaise Pascal, 17 (2010), 153-163.  doi: 10.5802/ambp.280.  Google Scholar

[21]

G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plenum Publishers, New York, 2001. doi: 10.1007/978-1-4757-4482-8.  Google Scholar

[22]

G. M. N'Guérékata, Topics in Almost Automorphy, Springer–Verlag, New York, 2005.  Google Scholar

[23]

G. M. N'Guérékata and A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal., 68 (2008), 2658-2667.  doi: 10.1016/j.na.2007.02.012.  Google Scholar

[24]

A. Haraux, Asymptotic behavior of trajectories for some nonautonomous, almost periodic processes, J. Differential Equations, 49 (1983), 473-483.  doi: 10.1016/0022-0396(83)90008-6.  Google Scholar

[25]

A. Haraux and P. Souplet, An example of uniformly recurrent function which is not almost periodic, J. Fourier Anal. Appl., 10 (2004), 217-220.  doi: 10.1007/s00041-004-8012-4.  Google Scholar

[26]

H. R. Henríquez, On Stepanov-almost periodic semigroups and cosine functions of operators, J. Math. Anal. Appl., 146 (1990), 420-433.   Google Scholar

[27]

E. Hille, Functional Analysis and Semi-Groups, American Mathematical Society, New York, 1948.  Google Scholar

[28]

D. Ji and Y. Lu, Stepanov-like pseudo almost automorphic solution to a parabolic evolution equation, Adv. Difference Equ., 341 (2015), 17 pp. doi: 10.1186/s13662-015-0667-4.  Google Scholar

[29]

M. Kostić, Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations, De Gruyter, Berlin, 2019. doi: 10.1515/9783110641851.  Google Scholar

[30]

M. Kostić, Chaos for Linear Operators and Abstract Differential Equations, Nova Science Publishers Inc., New York, 2020. Google Scholar

[31]

M. Kostić, ${\mathcal F}$-Hypercyclic operators on Fréchet spaces, Publ. Inst. Math. (Beograd) (N.S.), 106 (2019), 1-18.  doi: 10.2298/pim1920001k.  Google Scholar

[32]

M. Kostić, Quasi-asymptotically almost periodic functions and applications, Bull. Braz. Math. Soc., New Series, (2020). doi: 10.1007/s00574-020-00197-7.  Google Scholar

[33]

B. M. Levitan, Počti-periodičeskie funkcii, (Russian) [Almost Periodic Functions]  Google Scholar

[34] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, London, 1982.   Google Scholar
[35]

P. Ribenboim, Density results on families of Diophantine equations with finitely many solutions, Enseign. Math. (2), 39 (1993), 3-23.   Google Scholar

[36]

A. M. Samoilenko and S. I. Trofimchuk, Unbounded functions with almost periodic differences, Ukrainian Math. J., 43 (1991), 1306-1309.  doi: 10.1007/BF01061818.  Google Scholar

[37]

W. A. Veech, Almost automorphic functions on groups, Amer. J. Math., 87 (1965), 719-751.  doi: 10.2307/2373071.  Google Scholar

[38]

W. A. Veech, On a theorem of Bochner, Ann. of Math., 86 (1967), 117-137.  doi: 10.2307/1970363.  Google Scholar

[39]

R. Xie and C. Zhang, Space of $\omega$-periodic limit functions and its applications to an abstract Cauchy problem, J. Function Spaces, vol. 2015, Art. ID 953540, 10 pp. doi: 10.1155/2015/953540.  Google Scholar

[40]

S. Zaidman, Almost-Periodic Functions in Abstract Spaces, Research Notes in Math., vol.126, Pitman, Boston, MA, 1985.  Google Scholar

[41]

C. Zhang, Ergodicity and asymptotically almost periodic solutions of some differential equations, Int. J. Math. Math. Sci., 25 (2001), 787-800.  doi: 10.1155/S016117120100429X.  Google Scholar

[42]

H. Y. Zhao and M. Fečkan, Pseudo almost periodic solutions of an iterative equation with variable coefficients, Miskolc Math. Notes, 18 (2017), 515-524.  doi: 10.18514/MMN.2017.2047.  Google Scholar

show all references

References:
[1]

S. Abbas, A note on Weyl pseudo almost automorphic functions and their properties, Math. Sci. (Springer), 6 (2012), 5 pp. doi: 10.1186/2251-7456-6-29.  Google Scholar

[2]

B. Basit, Some problems concerning different types of vector valued almost periodic functions, Dissertationes Math., 338 (1995), 26 pp.  Google Scholar

[3]

B. Basit and H. Güenzler, On spectral criteria for solutions of evolution equations and comments on reduced spectra, Far East J. Math. Sci. (FJMS), 65 (2012), 273-288.   Google Scholar

[4]

M. V. Bebutov, On dynamical systems in the space of continuous functions, Byull. Moskov. Gos. Univ. Mat., 2 (1940), 1-52.   Google Scholar

[5]

A. S. Besicovitch, Almost Periodic Functions, Dover Publications, Inc., New York, 1955.  Google Scholar

[6]

H. Bohr, Zur theorie der fastperiodischen Funktionen Ⅰ; Ⅱ; Ⅲ, Acta Math., 45 (1924), 29–127; H6 (1925), 101–214; H5 (1926), 237–281. doi: 10.1007/BF02395468.  Google Scholar

[7]

H. Bohr, Almost Periodic Functions, Chelsea Publishing Company, New York, N.Y., 1947.  Google Scholar

[8]

L. I. Danilov, The uniform approximation of recurrent functions and almost recurrent functions, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 4 (2013), 36-54.   Google Scholar

[9]

J. de Vries, Elements of Topological Dynamics, Mathematics and its Applications, vol. 257, Kluwer Academic Publishers Group, Dordrecht, 1993. doi: 10.1007/978-94-015-8171-4.  Google Scholar

[10]

T. Diagana, Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces, Springer, Cham, 2013. doi: 10.1007/978-3-319-00849-3.  Google Scholar

[11]

H.-S. DingJ. Liang and T.-J. Xiao, Some properties of Stepanov-like almost automorphic functions and applications to abstract evolution equations, Appl. Anal., 88 (2009), 1079-1091.  doi: 10.1080/00036810903156164.  Google Scholar

[12]

H.-S. DingW. Long and G. M. N'Guérékata, Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients, J. Comput. Anal. Appl., 13 (2011), 231-242.   Google Scholar

[13]

H.-S. Ding and S.-M. Wan, Asymptotically almost automorphic solutions of differential equations with piecewise constant argument, Open Math., 15 (2017), 595-610.  doi: 10.1515/math-2017-0051.  Google Scholar

[14]

T. Eisner, B. Farkas, M. Haase and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Graduate Text in Mathematics, vol. 272, Springer, Cham, 2015. doi: 10.1007/978-3-319-16898-2.  Google Scholar

[15]

K.-J. Engel and R. Nagel, One–Parameter Semigroups for Linear Evolution Equations, Springer–Verlag, New York, 2000.  Google Scholar

[16]

A. M. Fink, Almost Periodic Differential Equations, Springer-Verlag, Berlin-New York, 1974.  Google Scholar

[17]

A. M. Fink, Extensions of almost automorphic sequences, J. Math. Anal. Appl., 27 (1969), 519-523.  doi: 10.1016/0022-247X(69)90132-2.  Google Scholar

[18]

A. M. Fink, Almost Periodic Points in Topological Transformation Semi-groups, Ph.D thesis, Iowa State University, Digital Repository (1960), 44 pp.  Google Scholar

[19]

A. Geroldinger and I. Z. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8962-8.  Google Scholar

[20]

G. GrekosV. Toma and J. Tomanová, A note on uniform or Banach density, Ann. Math. Blaise Pascal, 17 (2010), 153-163.  doi: 10.5802/ambp.280.  Google Scholar

[21]

G. M. N'Guérékata, Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer Academic/Plenum Publishers, New York, 2001. doi: 10.1007/978-1-4757-4482-8.  Google Scholar

[22]

G. M. N'Guérékata, Topics in Almost Automorphy, Springer–Verlag, New York, 2005.  Google Scholar

[23]

G. M. N'Guérékata and A. Pankov, Stepanov-like almost automorphic functions and monotone evolution equations, Nonlinear Anal., 68 (2008), 2658-2667.  doi: 10.1016/j.na.2007.02.012.  Google Scholar

[24]

A. Haraux, Asymptotic behavior of trajectories for some nonautonomous, almost periodic processes, J. Differential Equations, 49 (1983), 473-483.  doi: 10.1016/0022-0396(83)90008-6.  Google Scholar

[25]

A. Haraux and P. Souplet, An example of uniformly recurrent function which is not almost periodic, J. Fourier Anal. Appl., 10 (2004), 217-220.  doi: 10.1007/s00041-004-8012-4.  Google Scholar

[26]

H. R. Henríquez, On Stepanov-almost periodic semigroups and cosine functions of operators, J. Math. Anal. Appl., 146 (1990), 420-433.   Google Scholar

[27]

E. Hille, Functional Analysis and Semi-Groups, American Mathematical Society, New York, 1948.  Google Scholar

[28]

D. Ji and Y. Lu, Stepanov-like pseudo almost automorphic solution to a parabolic evolution equation, Adv. Difference Equ., 341 (2015), 17 pp. doi: 10.1186/s13662-015-0667-4.  Google Scholar

[29]

M. Kostić, Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations, De Gruyter, Berlin, 2019. doi: 10.1515/9783110641851.  Google Scholar

[30]

M. Kostić, Chaos for Linear Operators and Abstract Differential Equations, Nova Science Publishers Inc., New York, 2020. Google Scholar

[31]

M. Kostić, ${\mathcal F}$-Hypercyclic operators on Fréchet spaces, Publ. Inst. Math. (Beograd) (N.S.), 106 (2019), 1-18.  doi: 10.2298/pim1920001k.  Google Scholar

[32]

M. Kostić, Quasi-asymptotically almost periodic functions and applications, Bull. Braz. Math. Soc., New Series, (2020). doi: 10.1007/s00574-020-00197-7.  Google Scholar

[33]

B. M. Levitan, Počti-periodičeskie funkcii, (Russian) [Almost Periodic Functions]  Google Scholar

[34] B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, London, 1982.   Google Scholar
[35]

P. Ribenboim, Density results on families of Diophantine equations with finitely many solutions, Enseign. Math. (2), 39 (1993), 3-23.   Google Scholar

[36]

A. M. Samoilenko and S. I. Trofimchuk, Unbounded functions with almost periodic differences, Ukrainian Math. J., 43 (1991), 1306-1309.  doi: 10.1007/BF01061818.  Google Scholar

[37]

W. A. Veech, Almost automorphic functions on groups, Amer. J. Math., 87 (1965), 719-751.  doi: 10.2307/2373071.  Google Scholar

[38]

W. A. Veech, On a theorem of Bochner, Ann. of Math., 86 (1967), 117-137.  doi: 10.2307/1970363.  Google Scholar

[39]

R. Xie and C. Zhang, Space of $\omega$-periodic limit functions and its applications to an abstract Cauchy problem, J. Function Spaces, vol. 2015, Art. ID 953540, 10 pp. doi: 10.1155/2015/953540.  Google Scholar

[40]

S. Zaidman, Almost-Periodic Functions in Abstract Spaces, Research Notes in Math., vol.126, Pitman, Boston, MA, 1985.  Google Scholar

[41]

C. Zhang, Ergodicity and asymptotically almost periodic solutions of some differential equations, Int. J. Math. Math. Sci., 25 (2001), 787-800.  doi: 10.1155/S016117120100429X.  Google Scholar

[42]

H. Y. Zhao and M. Fečkan, Pseudo almost periodic solutions of an iterative equation with variable coefficients, Miskolc Math. Notes, 18 (2017), 515-524.  doi: 10.18514/MMN.2017.2047.  Google Scholar

[1]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[2]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

[3]

Chao Wang, Ravi P Agarwal. Almost automorphic functions on semigroups induced by complete-closed time scales and application to dynamic equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 781-798. doi: 10.3934/dcdsb.2019267

[4]

Gaston Mandata N ' Guerekata. Remarks on almost automorphic differential equations. Conference Publications, 2001, 2001 (Special) : 276-279. doi: 10.3934/proc.2001.2001.276

[5]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[6]

Hailong Zhu, Jifeng Chu, Weinian Zhang. Mean-square almost automorphic solutions for stochastic differential equations with hyperbolicity. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1935-1953. doi: 10.3934/dcds.2018078

[7]

Aníbal Coronel, Christopher Maulén, Manuel Pinto, Daniel Sepúlveda. Almost automorphic delayed differential equations and Lasota-Wazewska model. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 1959-1977. doi: 10.3934/dcds.2017083

[8]

Gaston N'Guerekata. On weak-almost periodic mild solutions of some linear abstract differential equations. Conference Publications, 2003, 2003 (Special) : 672-677. doi: 10.3934/proc.2003.2003.672

[9]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[10]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6425-6462. doi: 10.3934/dcdsb.2021026

[11]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[12]

Rui Zhang, Yong-Kui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5525-5537. doi: 10.3934/dcds.2013.33.5525

[13]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[14]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[15]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[16]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[17]

Yong Li, Zhenxin Liu, Wenhe Wang. Almost periodic solutions and stable solutions for stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5927-5944. doi: 10.3934/dcdsb.2019113

[18]

Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002

[19]

Khalida Inayat Noor, Muhammad Aslam Noor. Higher order uniformly close-to-convex functions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1277-1290. doi: 10.3934/dcdss.2015.8.1277

[20]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

2020 Impact Factor: 1.081

Article outline

[Back to Top]