• Previous Article
    Global classical and weak solutions of the prion proliferation model in the presence of chaperone in a banach space
  • EECT Home
  • This Issue
  • Next Article
    BV solutions of a convex sweeping process with a composed perturbation
doi: 10.3934/eect.2021013
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations

Research lab: Analysis, Probability and Fractals, University of Monastir, Faculty of Sciences, Monastir, Tunisia, I.P.E.I. Monastir, Ibn el Jazzar street, 5019 Monastir, Tunisia

Received  September 2020 Revised  January 2021 Early access March 2021

In the current issue, we consider a general class of two coupled weakly dissipative fractional Schrödinger-type equations. We will prove that the asymptotic dynamics of the solutions for such NLS system will be described by the existence of a regular compact global attractor in the phase space that has finite fractal dimension.

Citation: Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, doi: 10.3934/eect.2021013
References:
[1]

B. Alouini, Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 14 (2015), 1781-1801.  doi: 10.3934/cpaa.2015.14.1781.  Google Scholar

[2]

B. Alouini, A note on the finite fractal dimension of the global attractors for dissipative nonlinear Schrödinger-type equations, Math. Meth. Appl. Sci., 44 (2021), 91-103.  doi: 10.1002/mma.6709.  Google Scholar

[3]

B. Alouini, Global attractor for a one dimensional weakly damped Half-Wave equation, Discrete Continuous Dynamical Systems - S, 2020. doi: 10.3934/dcdss.2020410.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 116 (1990), 221-243.  doi: 10.1017/S0308210500031498.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynam. Systems - A, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

B. J. Benny and A. C. Newell, The propagation of nonlinear wave envelopes, Journal of Mathematical Physics, 46 (1967), 133-139.  doi: 10.1002/sapm1967461133.  Google Scholar

[7]

M. Cheng, The attractor of the dissipative coupled fractional Schrödinger equations, Math. Meth. Appl. Sci., 37 (2014), 645-656.  doi: 10.1002/mma.2820.  Google Scholar

[8]

K. W. Chow, Periodic waves for a system of coupled higher order nonlinear Schrödinger equations with third order dispersion, Physics Letters A, 203 (2003), 426-431.  doi: 10.1016/S0375-9601(03)00108-7.  Google Scholar

[9]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, 19, ACTA, 2002.  Google Scholar

[10]

I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping, Memoirs of the American Mathematical Society, 195, American Mathematical Society, 2008. doi: 10.1090/memo/0912.  Google Scholar

[11]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[12]

A. Esfahani and A. Pastor, Sharp constant of an anisotropic Gagliardo-Nirenberg type inequality and applications, Bull. Braz. Math. Soc. (New Series), 48 (2017), 171-185.  doi: 10.1007/s00574-016-0017-5.  Google Scholar

[13]

J. M. Ghidaglia, Finite dimensional behavior for weakly damped driven Schrödinger equations, Ann. Inst. Henri Poincaré: Anal. Non Linéaire, 5 (1988), 365-405.  doi: 10.1016/S0294-1449(16)30343-2.  Google Scholar

[14]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $ \mathbb{R}^2$, Advances in Differential Equations, 3 (1998), 337-360.   Google Scholar

[15]

O. Goubet and E. Zahrouni, Finite dimensional global attractor for a fractional nonlinear Schrödinger equation, NoDEA, 24 (2017), 59. doi: 10.1007/s00030-017-0482-6.  Google Scholar

[16]

L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, New-York, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[17]

B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Communications in Partial Differential Equations, 36 (2011), 247-255.  doi: 10.1080/03605302.2010.503769.  Google Scholar

[18]

B. Guo and Q. Li, Existence of the global smooth solution to a fractional nonlinear Schrödinger system in atomic Bose-Einstein condensates, Journal of Applied Analysis and Computation, 5 (2015), 793-808.  doi: 10.11948/2015060.  Google Scholar

[19]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Communications on Pure and Applied Analysis, 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.  Google Scholar

[20]

J. HuJ. Xin and H. Lu, The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Computers and Mathematics with Applications, 62 (2011), 1510-1521.  doi: 10.1016/j.camwa.2011.05.039.  Google Scholar

[21]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[22]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 56108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[23]

G. Li and C. Zhu, Global attractor for a class of coupled nonlinear Schrödinger equations, SeMA Journal, 60 (2012), 5-25.  doi: 10.1007/BF03391708.  Google Scholar

[24]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Rhode Island, 2001. doi: 10.1090/gsm/014.  Google Scholar

[25]

M. LisakB. Peterson and H. Wilhelmsson, Coupled nonlinear Schrödinger equations including growth and damping, Physics Letters A, 66 (1978), 83-85.  doi: 10.1016/0375-9601(78)90002-6.  Google Scholar

[26]

P. LiuZ. Li and S. Lou, A class of coupled nonlinear Schrödinger equations: Painlevé property, exact solutions, and application to atmospheric gravity waves, Appl. Math. Mech.(Eng. Ed.), 31 (2010), 1383-1404.  doi: 10.1007/s10483-010-1370-6.  Google Scholar

[27]

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP, 38 (1974), 248–253. Available from: http://www.jetp.ac.ru/cgi-bin/dn/e_038_02_0248.pdf Google Scholar

[28]

C. R. Menyuk, Application of multiple-length-scale methods to the study of optical fiber transmission, Journal of Engineering Mathematics, 36 (1999), 113-136.  doi: 10.1023/A:1017255407404.  Google Scholar

[29]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, 4 (2008), 103-200.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[30]

J. C. Robinson, Infinite-Dimensionel Dynamical Systems, An Introduction To Dissipative Parabolic PDEs And The Theorie Of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[31]

E. Russ, Racine carrées d'opérateurs elliptiques et espaces de Hardy, Confluente Mathematici, 3 (2011), 1-119.  doi: 10.1142/S1793744211000278.  Google Scholar

[32]

X. Sha, H. Ge and J. Xin, On the existence and stability of standing waves for 2-coupled nonlinear fractional Schrödinger system, Discrete Dynamics in Nature and Society, 2015 (2015). doi: 10.1155/2015/427487.  Google Scholar

[33]

B. K. Tan, Collision interactions of envelope Rossby solitons in barotropic atmosphere, Journal of the Atmospheric Sciences, 53 (1996), 1604-1616.  doi: 10.1175/1520-0469(1996)053<1604:CIOERS>2.0.CO;2.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics, Springer Applied Mathmatical Sciences, 68, Springer-Verlag, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

E. TimmermansP. TommasiniM. Hussein and A. Kerman, Feshbach resonances in atomic Bose-Einstein condensates, Physics Reports, 315 (1999), 199-230.  doi: 10.1016/S0370-1573(99)00025-3.  Google Scholar

[36]

M. V. Vladimirov, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR, 275 (1984), 780-783.   Google Scholar

[37]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D: Nonlinear Phenomena, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[38]

T. H. Wolff, Lectures On Harmonic Analysis, University Lecture Series, 29, American Mathematical Society, 2003. doi: 10.1090/ulect/029.  Google Scholar

[39]

W. YuW. LiuH. TrikiQ. ZhouA. Biswas and J. R. Belić, Control of dark and anti-dark solitons in the (2+1)-dimensional coupled nonlinear Schrödinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system, Nonlinear Dynamics, 97 (2019), 471-483.  doi: 10.1007/s11071-019-04992-w.  Google Scholar

[40]

Y. ZhangC. YangW. YuM. MirzazadehQ. Zhou and W. Liu, Interactions of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers, Nonlinear Dynamics, 94 (2018), 1351-1360.  doi: 10.1007/s11071-018-4428-2.  Google Scholar

show all references

References:
[1]

B. Alouini, Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 14 (2015), 1781-1801.  doi: 10.3934/cpaa.2015.14.1781.  Google Scholar

[2]

B. Alouini, A note on the finite fractal dimension of the global attractors for dissipative nonlinear Schrödinger-type equations, Math. Meth. Appl. Sci., 44 (2021), 91-103.  doi: 10.1002/mma.6709.  Google Scholar

[3]

B. Alouini, Global attractor for a one dimensional weakly damped Half-Wave equation, Discrete Continuous Dynamical Systems - S, 2020. doi: 10.3934/dcdss.2020410.  Google Scholar

[4]

A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 116 (1990), 221-243.  doi: 10.1017/S0308210500031498.  Google Scholar

[5]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Continuous Dynam. Systems - A, 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[6]

B. J. Benny and A. C. Newell, The propagation of nonlinear wave envelopes, Journal of Mathematical Physics, 46 (1967), 133-139.  doi: 10.1002/sapm1967461133.  Google Scholar

[7]

M. Cheng, The attractor of the dissipative coupled fractional Schrödinger equations, Math. Meth. Appl. Sci., 37 (2014), 645-656.  doi: 10.1002/mma.2820.  Google Scholar

[8]

K. W. Chow, Periodic waves for a system of coupled higher order nonlinear Schrödinger equations with third order dispersion, Physics Letters A, 203 (2003), 426-431.  doi: 10.1016/S0375-9601(03)00108-7.  Google Scholar

[9]

I. D. Chueshov, Introduction to The Theory of Infinite-Dimensional Dissipative Systems, University Lectures in Contemporary Mathematics, 19, ACTA, 2002.  Google Scholar

[10]

I. D. Chueshov and I. Lasiecka, Long-Time Behavior of Second Order Evolution Equations With Nonlinear Damping, Memoirs of the American Mathematical Society, 195, American Mathematical Society, 2008. doi: 10.1090/memo/0912.  Google Scholar

[11]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[12]

A. Esfahani and A. Pastor, Sharp constant of an anisotropic Gagliardo-Nirenberg type inequality and applications, Bull. Braz. Math. Soc. (New Series), 48 (2017), 171-185.  doi: 10.1007/s00574-016-0017-5.  Google Scholar

[13]

J. M. Ghidaglia, Finite dimensional behavior for weakly damped driven Schrödinger equations, Ann. Inst. Henri Poincaré: Anal. Non Linéaire, 5 (1988), 365-405.  doi: 10.1016/S0294-1449(16)30343-2.  Google Scholar

[14]

O. Goubet, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation in $ \mathbb{R}^2$, Advances in Differential Equations, 3 (1998), 337-360.   Google Scholar

[15]

O. Goubet and E. Zahrouni, Finite dimensional global attractor for a fractional nonlinear Schrödinger equation, NoDEA, 24 (2017), 59. doi: 10.1007/s00030-017-0482-6.  Google Scholar

[16]

L. Grafakos, Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, New-York, 2014. doi: 10.1007/978-1-4939-1194-3.  Google Scholar

[17]

B. Guo and Z. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Communications in Partial Differential Equations, 36 (2011), 247-255.  doi: 10.1080/03605302.2010.503769.  Google Scholar

[18]

B. Guo and Q. Li, Existence of the global smooth solution to a fractional nonlinear Schrödinger system in atomic Bose-Einstein condensates, Journal of Applied Analysis and Computation, 5 (2015), 793-808.  doi: 10.11948/2015060.  Google Scholar

[19]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Communications on Pure and Applied Analysis, 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.  Google Scholar

[20]

J. HuJ. Xin and H. Lu, The global solution for a class of systems of fractional nonlinear Schrödinger equations with periodic boundary condition, Computers and Mathematics with Applications, 62 (2011), 1510-1521.  doi: 10.1016/j.camwa.2011.05.039.  Google Scholar

[21]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[22]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 56108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[23]

G. Li and C. Zhu, Global attractor for a class of coupled nonlinear Schrödinger equations, SeMA Journal, 60 (2012), 5-25.  doi: 10.1007/BF03391708.  Google Scholar

[24]

E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14, American Mathematical Society, Rhode Island, 2001. doi: 10.1090/gsm/014.  Google Scholar

[25]

M. LisakB. Peterson and H. Wilhelmsson, Coupled nonlinear Schrödinger equations including growth and damping, Physics Letters A, 66 (1978), 83-85.  doi: 10.1016/0375-9601(78)90002-6.  Google Scholar

[26]

P. LiuZ. Li and S. Lou, A class of coupled nonlinear Schrödinger equations: Painlevé property, exact solutions, and application to atmospheric gravity waves, Appl. Math. Mech.(Eng. Ed.), 31 (2010), 1383-1404.  doi: 10.1007/s10483-010-1370-6.  Google Scholar

[27]

S. V. Manakov, On the theory of two-dimensional stationary self-focusing of electromagnetic waves, Sov. Phys. JETP, 38 (1974), 248–253. Available from: http://www.jetp.ac.ru/cgi-bin/dn/e_038_02_0248.pdf Google Scholar

[28]

C. R. Menyuk, Application of multiple-length-scale methods to the study of optical fiber transmission, Journal of Engineering Mathematics, 36 (1999), 113-136.  doi: 10.1023/A:1017255407404.  Google Scholar

[29]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, 4 (2008), 103-200.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[30]

J. C. Robinson, Infinite-Dimensionel Dynamical Systems, An Introduction To Dissipative Parabolic PDEs And The Theorie Of Global Attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2001. doi: 10.1007/978-94-010-0732-0.  Google Scholar

[31]

E. Russ, Racine carrées d'opérateurs elliptiques et espaces de Hardy, Confluente Mathematici, 3 (2011), 1-119.  doi: 10.1142/S1793744211000278.  Google Scholar

[32]

X. Sha, H. Ge and J. Xin, On the existence and stability of standing waves for 2-coupled nonlinear fractional Schrödinger system, Discrete Dynamics in Nature and Society, 2015 (2015). doi: 10.1155/2015/427487.  Google Scholar

[33]

B. K. Tan, Collision interactions of envelope Rossby solitons in barotropic atmosphere, Journal of the Atmospheric Sciences, 53 (1996), 1604-1616.  doi: 10.1175/1520-0469(1996)053<1604:CIOERS>2.0.CO;2.  Google Scholar

[34]

R. Temam, Infinite-Dimensional Dynamical Systems In Mechanics and Physics, Springer Applied Mathmatical Sciences, 68, Springer-Verlag, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[35]

E. TimmermansP. TommasiniM. Hussein and A. Kerman, Feshbach resonances in atomic Bose-Einstein condensates, Physics Reports, 315 (1999), 199-230.  doi: 10.1016/S0370-1573(99)00025-3.  Google Scholar

[36]

M. V. Vladimirov, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Dokl. Akad. Nauk SSSR, 275 (1984), 780-783.   Google Scholar

[37]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D: Nonlinear Phenomena, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[38]

T. H. Wolff, Lectures On Harmonic Analysis, University Lecture Series, 29, American Mathematical Society, 2003. doi: 10.1090/ulect/029.  Google Scholar

[39]

W. YuW. LiuH. TrikiQ. ZhouA. Biswas and J. R. Belić, Control of dark and anti-dark solitons in the (2+1)-dimensional coupled nonlinear Schrödinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system, Nonlinear Dynamics, 97 (2019), 471-483.  doi: 10.1007/s11071-019-04992-w.  Google Scholar

[40]

Y. ZhangC. YangW. YuM. MirzazadehQ. Zhou and W. Liu, Interactions of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers, Nonlinear Dynamics, 94 (2018), 1351-1360.  doi: 10.1007/s11071-018-4428-2.  Google Scholar

[1]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[2]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031

[3]

Thierry Cazenave, Zheng Han. Asymptotic behavior for a Schrödinger equation with nonlinear subcritical dissipation. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 4801-4819. doi: 10.3934/dcds.2020202

[4]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[5]

Haoyue Cui, Dongyi Liu, Genqi Xu. Asymptotic behavior of a Schrödinger equation under a constrained boundary feedback. Mathematical Control & Related Fields, 2018, 8 (2) : 383-395. doi: 10.3934/mcrf.2018015

[6]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[7]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[8]

Shengfan Zhou, Min Zhao. Fractal dimension of random attractor for stochastic non-autonomous damped wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2887-2914. doi: 10.3934/dcds.2016.36.2887

[9]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[10]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[11]

Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2933-2946. doi: 10.3934/dcdss.2020393

[12]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[13]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[14]

Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure & Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55

[15]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[16]

Nikos I. Karachalios, Nikos M. Stavrakakis. Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 939-951. doi: 10.3934/dcds.2002.8.939

[17]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[18]

Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971

[19]

Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2077-2102. doi: 10.3934/dcds.2017089

[20]

Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754-762. doi: 10.3934/proc.2011.2011.754

2020 Impact Factor: 1.081

Article outline

[Back to Top]