• Previous Article
    Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space
  • EECT Home
  • This Issue
  • Next Article
    Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations
April  2022, 11(2): 583-603. doi: 10.3934/eect.2021015

Dynamics of piezoelectric beams with magnetic effects and delay term

1. 

Faculty of Mathematics, Federal University of Pará, Raimundo Santana Street, S/N, 68721-000, Salinópolis, PA, Brazil

2. 

Faculty of Exact Sciences and Technology, Federal University of Pará, Manoel de Abre Street, S/N, 68440-000, Abaetetuba, PA, Brazil

3. 

Faculty of Petroleum Engineering, Federal University of Pará, Raimundo Santana Street, S/N, 68721-000, Salinópolis, PA, Brazil

* Corresponding author: Mirelson M. Freitas

Received  February 2020 Revised  December 2020 Published  April 2022 Early access  April 2021

In this paper, we consider a piezoelectric beams system with magnetic effects and delay term. We study its long-time behavior through the associated dynamical system. We prove that the system is gradient and asymptotically smooth, which as a consequence, implies the existence of a global attractor, which is characterized as unstable manifold of the set of stationary solutions. We also get the quasi-stability of the system by establishing a stabilizability estimate and therefore obtain the finite fractal dimension of the global attractor.

Citation: Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations and Control Theory, 2022, 11 (2) : 583-603. doi: 10.3934/eect.2021015
References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations. Studies in Mathematics and its Applications, North-Holland, Amsterdam, 1992.

[2]

J. M. Balthazar, R. T. Rocha, R. M. F. L. Brasil, A. M. Tusset, B. R. de Pontes and M. Silveira, Mode Saturation, Mode Coupling and Energy Harvesting From Ambient Vibration in a Portal Frame Structure, Volume 8: 26th Conference on Mechanical Vibration and Noise, American Society of Mechanical Engineers, 2014.

[3]

A. R. A. Barbosa and T. F. Ma, Long-time dynamics of an extensible plate equation with thermal memory, Journal of Mathematical Analysis and Applications, 416 (2014), 143-165.  doi: 10.1016/j.jmaa.2014.02.042.

[4]

C. BricaultC. PézeratM. ColletA. PyskirP. PerrardG. Matten and V. Romero-García, Multimodal reduction of acoustic radiation of thin plates by using a single piezoelectric patch with a negative capacitance shunt, Applied Acoustics, 145 (2019), 320-327.  doi: 10.1016/j.apacoust.2018.10.016.

[5]

M. ChenH. ChenX. MaG. JinT. YeY. Zhang and Z. Liu, The isogeometric free vibration and transient response of functionally graded piezoelectric curved beam with elastic restraints, Results in Physics, 11 (2018), 712-725.  doi: 10.1016/j.rinp.2018.10.019.

[6]

I. Chueshov, Introduction to the Theory of Infinite-dimensional Dissipative Systems, AKTA, Kharkiv, 1999.

[7]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp. doi: 10.1090/memo/0912.

[8]

C. DagdevirenP. JoeO. L. TuzmanK. ParkK. J. LeeY. ShiY. Huang and J. A. Rogers, Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation, Extreme Mechanics Letters, 9 (2016), 269-281.  doi: 10.1016/j.eml.2016.05.015.

[9]

M. F. Daqaq, R. Masana, A. Erturk and D. D. Quinn, On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion, Applied Mechanics Reviews, 66 (2014), 040801. doi: 10.1115/1.4026278.

[10]

R. Datko, Representation of solutions and stability of linear differential-difference equations in a Banach space, Journal of Differential Equations, 29 (1978), 105-166.  doi: 10.1016/0022-0396(78)90043-8.

[11]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM Journal on Control and Optimization, 24 (1986), 152–156. doi: 10.1137/0324007.

[12]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM Journal on Control and Optimization, 26 (1988), 697–713. doi: 10.1137/0326040.

[13]

R. Datko, Two questions concerning the boundary control of certain elastic systems, Journal of Differential Equations, 92 (1991), 27-44.  doi: 10.1016/0022-0396(91)90062-E.

[14]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérice pour les Sciences et las Techniques, Masson, Paris, 1987.

[15]

L. H. FatoriM. A. J. Silva and V. Narciso, Quasi-stability property and attractors for a semilinear Timoshenko system, Discrete and Continuous Dynamical Systems, 36 (2016), 6117-6132.  doi: 10.3934/dcds.2016067.

[16]

Q. Feng, Y. Liang and G. Song, Real-time monitoring of early-age concrete strength using piezoceramic-based smart aggregates, Journal of Aerospace Engineering, 32 (2019), 04018115. doi: 10.1061/(ASCE)AS.1943-5525.0000939.

[17]

A. G. HaddowA. D. S. Barr and D. T. Mook, Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure, Journal of Sound and Vibration, 97 (1984), 451-473.  doi: 10.1016/0022-460X(84)90272-4.

[18]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.

[19]

A. Haraux, Une remarque sur la stabilisation de certains systemes du deuxieme ordre en temps, Portugaliae Mathematica, 46 (1989), 245-258. 

[20]

I. R. Henderson, Piezoelectric Ceramics: Principles and Applications, APC International, Pennsylvania, USA, 2002.

[21]

H. Y. Hu and Z. H. Wang, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer: Berlin/Heidelbeg, Germany, 2002. doi: 10.1007/978-3-662-05030-9.

[22]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Dynamics, Springer Monographs in Mathematics, New York, 2010. doi: 10.1007/978-0-387-87712-9.

[23]

I. IliukJ. M. BalthazarA. M. TussetJ. R. C. PiqueiraB. R. PontesJ. L. P. Felix and Á. M. Bueno, Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system, Journal of Intelligent Material Systems and Structures, 25 (2013), 417-429.  doi: 10.1177/1045389X13500570.

[24]

I. IliukJ. M. BalthazarA.M. TussetJ. R. C. PiqueiraB. R. PontesJ. L. P. Felix and Á. M. Bueno, A non-ideal portal frame energy harvester controlled using a pendulum, The European Physical Journal Special Topics, 222 (2013), 1575-1586.  doi: 10.1140/epjst/e2013-01946-4.

[25]

I. Iliuk, R. M. L. R. da Fonseca Brasil, J. M. Balthazar, A. M. Tusset, V. Piccirillo and J. R. C. Piqueira, Potential application in energy harvesting of intermodal energy exchange in a frame: FEM analysis, International Journal of Structural Stability and Dynamics, 14 (2014), 1440027. doi: 10.1142/S0219455414400276.

[26]

N. Jalili, Piezoelectric-Based Vibration Control, Springer US, 2010. doi: 10.1007/978-1-4419-0070-8.

[27]

T. Jiang, Y. Zhang, L. Wang, L. Zhang and G. Song, Monitoring fatigue damage of modular bridge expansion joints using piezoceramic transducers, Sensors, 18 (2018), 3973. doi: 10.3390/s18113973.

[28]

Y. Y. Lim, Z. S. Tang and S. T. Smith, Piezoelectric-based monitoring of the curing of structural adhesives: a novel experimental study, Smart Materials and Structures, 28 (2018), 015016. doi: 10.1088/1361-665X/aaeea4.

[29]

M. Ling, J. Cao, Q. Li and J. Zhuang, Design, pseudostatic model, and PVDF-based motion sensing of a piezo-actuated XYZ flexure manipulator, IEEE/ASME Transactions on Mechatronics, 23 (2018), 2837–2848. doi: 10.1109/TMECH.2018.2871371.

[30]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of bresse systems, SIAM Journal on Mathematical Analysis, 49 (2017), 2468-2495.  doi: 10.1137/15M1039894.

[31]

P. Malatkar, Nonlinear Vibrations of Cantilever Beams and Plates, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2003.

[32]

P. Malatkar and A. H. Nayfeh, Steady-State dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator, Nonlinear Dynamics, 47 (2006), 167-179.  doi: 10.1007/s11071-006-9066-4.

[33] J. C. Maxwell, A Dynamical Theory of the Electromagnetic Field, Scottish Academic Press, Edinburgh, 1982. 
[34] J. C. Maxwell, A Treatise on Electricity and Magnetism, The Clarendon Press, Oxford University Press, New York, 1998. 
[35]

K. Morris and A. O. Ozer, Strong Stabilization of Piezoelectric Beams with Magnetic Effects, 52nd IEEE Conference on Decision and Control, 2013. doi: 10.1109/CDC.2013.6760341.

[36]

K. A. Morris and A. O. Ozer, Modeling and Stabilizability of Voltage-Actuated Piezoelectric Beams with Magnetic Effects, SIAM Journal on Control and Optimization, 52 (2014), 2371–2398. doi: 10.1137/130918319.

[37]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differential Integral Equations, 21 (2008), 935-958. 

[38]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM Journal on Control and Optimization, 45 (2006), 1561–1585. doi: 10.1137/060648891.

[39]

S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2009), 420–456. doi: 10.1051/cocv/2009007.

[40]

A. O. Ozer, Further stabilization and exact observability results for voltage-actuated piezoelectric beams with magnetic effects, Mathematics of Control, Signals, and Systems, 27 (2015), 219-244.  doi: 10.1007/s00498-015-0139-0.

[41]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[42]

A. Presas, Y. Luo and Z. Wang, D. Valentin and M. Egusquiza, A review of PZT patches applications in submerged systems, Sensors, 18 (2018), 2251. doi: 10.3390/s18072251.

[43]

J. Przybylski and G. Gasiorski, Nonlinear vibrations of elastic beam with piezoelectric actuators, Journal of Sound and Vibration, 437 (2018), 150-165.  doi: 10.1016/j.jsv.2018.09.005.

[44]

A. J. A. Ramos, C. S. L. Gonçalves and S. S. C. Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 255–274. doi: 10.1051/m2an/2018004.

[45]

A. J. A. Ramos, M. M. Freitas, D. S. Almeida, S. S. Jesus and T. R. S. Moura, Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect, Zeitschrift Für Angewandte Mathematik und Physik, 70 (2019), Paper No. 60, 14 pp. doi: 10.1007/s00033-019-1106-2.

[46]

A. J. A. RamosA. O. OzerM. M. FreitasD. S. Almeida and J. D. Martins, Exponential stabilitization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback, Zeitschrift Für Angewandte Mathematik und Physik, 72 (2021), 1-15.  doi: 10.1007/s00033-020-01457-8.

[47]

G. Rega, Nonlinear interactions: Analytical, computational, and experimental methods, Wiley Series in Nonlinear Science Wiley, New York 2000. 760 pp, Meccanica, 35 (2000), 583-586. 

[48]

B. Said-Houari and Y. Laskri, A stability result of a Timoshenko system with a delay term in the internal feedback, Applied Mathematics and Computation, 217 (2010), 2857-2869.  doi: 10.1016/j.amc.2010.08.021.

[49]

P. Shivashankar and S. B. Kandagal, Characterization of elastic and electromechanical nonlinearities in piezoceramic plate actuators from vibrations of a piezoelectric-beam, Mechanical Systems and Signal Processing, 116 (2019), 624-640.  doi: 10.1016/j.ymssp.2018.06.063.

[50]

L. T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation, Advances in Computational Mathematics, 26 (2006), 337-365.  doi: 10.1007/s10444-004-7629-9.

[51]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[52]

H. F. Tiersten, Linear Piezoelectric Plate Vibrations, Springer US, 1969.

[53]

Z. H. Wang and H. Y. Hu, Stabilization of vibration systems via delayed state difference feedback, Journal of Sound and Vibration, 296 (2006), 117-129.  doi: 10.1016/j.jsv.2006.02.013.

[54]

T. Wang, D. Wei, J. Shao, Y. Li and G. Song, Structural stress monitoring based on piezoelectric impedance frequency shift, Journal of Aerospace Engineering, 31 (2018), 04018092. doi: 10.1061/(ASCE)AS.1943-5525.0000900.

[55] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, 2001. 
[56]

Z. ZhouY. NiS. ZhuZ. TongJ. Sun and X. Xu, An accurate and straightforward approach to thermo-electro-mechanical vibration of piezoelectric fiber-reinforced composite cylindrical shells, Composite Structures, 207 (2019), 292-303.  doi: 10.1016/j.compstruct.2018.08.076.

show all references

References:
[1]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations. Studies in Mathematics and its Applications, North-Holland, Amsterdam, 1992.

[2]

J. M. Balthazar, R. T. Rocha, R. M. F. L. Brasil, A. M. Tusset, B. R. de Pontes and M. Silveira, Mode Saturation, Mode Coupling and Energy Harvesting From Ambient Vibration in a Portal Frame Structure, Volume 8: 26th Conference on Mechanical Vibration and Noise, American Society of Mechanical Engineers, 2014.

[3]

A. R. A. Barbosa and T. F. Ma, Long-time dynamics of an extensible plate equation with thermal memory, Journal of Mathematical Analysis and Applications, 416 (2014), 143-165.  doi: 10.1016/j.jmaa.2014.02.042.

[4]

C. BricaultC. PézeratM. ColletA. PyskirP. PerrardG. Matten and V. Romero-García, Multimodal reduction of acoustic radiation of thin plates by using a single piezoelectric patch with a negative capacitance shunt, Applied Acoustics, 145 (2019), 320-327.  doi: 10.1016/j.apacoust.2018.10.016.

[5]

M. ChenH. ChenX. MaG. JinT. YeY. Zhang and Z. Liu, The isogeometric free vibration and transient response of functionally graded piezoelectric curved beam with elastic restraints, Results in Physics, 11 (2018), 712-725.  doi: 10.1016/j.rinp.2018.10.019.

[6]

I. Chueshov, Introduction to the Theory of Infinite-dimensional Dissipative Systems, AKTA, Kharkiv, 1999.

[7]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), viii+183 pp. doi: 10.1090/memo/0912.

[8]

C. DagdevirenP. JoeO. L. TuzmanK. ParkK. J. LeeY. ShiY. Huang and J. A. Rogers, Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation, Extreme Mechanics Letters, 9 (2016), 269-281.  doi: 10.1016/j.eml.2016.05.015.

[9]

M. F. Daqaq, R. Masana, A. Erturk and D. D. Quinn, On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion, Applied Mechanics Reviews, 66 (2014), 040801. doi: 10.1115/1.4026278.

[10]

R. Datko, Representation of solutions and stability of linear differential-difference equations in a Banach space, Journal of Differential Equations, 29 (1978), 105-166.  doi: 10.1016/0022-0396(78)90043-8.

[11]

R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM Journal on Control and Optimization, 24 (1986), 152–156. doi: 10.1137/0324007.

[12]

R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM Journal on Control and Optimization, 26 (1988), 697–713. doi: 10.1137/0326040.

[13]

R. Datko, Two questions concerning the boundary control of certain elastic systems, Journal of Differential Equations, 92 (1991), 27-44.  doi: 10.1016/0022-0396(91)90062-E.

[14]

R. Dautray and J.-L. Lions, Analyse Mathématique et Calcul Numérice pour les Sciences et las Techniques, Masson, Paris, 1987.

[15]

L. H. FatoriM. A. J. Silva and V. Narciso, Quasi-stability property and attractors for a semilinear Timoshenko system, Discrete and Continuous Dynamical Systems, 36 (2016), 6117-6132.  doi: 10.3934/dcds.2016067.

[16]

Q. Feng, Y. Liang and G. Song, Real-time monitoring of early-age concrete strength using piezoceramic-based smart aggregates, Journal of Aerospace Engineering, 32 (2019), 04018115. doi: 10.1061/(ASCE)AS.1943-5525.0000939.

[17]

A. G. HaddowA. D. S. Barr and D. T. Mook, Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure, Journal of Sound and Vibration, 97 (1984), 451-473.  doi: 10.1016/0022-460X(84)90272-4.

[18]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25. American Mathematical Society, Providence, RI, 1988. doi: 10.1090/surv/025.

[19]

A. Haraux, Une remarque sur la stabilisation de certains systemes du deuxieme ordre en temps, Portugaliae Mathematica, 46 (1989), 245-258. 

[20]

I. R. Henderson, Piezoelectric Ceramics: Principles and Applications, APC International, Pennsylvania, USA, 2002.

[21]

H. Y. Hu and Z. H. Wang, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer: Berlin/Heidelbeg, Germany, 2002. doi: 10.1007/978-3-662-05030-9.

[22]

I. Chueshov and I. Lasiecka, Von Karman Evolution Equations. Well-posedness and Long Time Dynamics, Springer Monographs in Mathematics, New York, 2010. doi: 10.1007/978-0-387-87712-9.

[23]

I. IliukJ. M. BalthazarA. M. TussetJ. R. C. PiqueiraB. R. PontesJ. L. P. Felix and Á. M. Bueno, Application of passive control to energy harvester efficiency using a nonideal portal frame structural support system, Journal of Intelligent Material Systems and Structures, 25 (2013), 417-429.  doi: 10.1177/1045389X13500570.

[24]

I. IliukJ. M. BalthazarA.M. TussetJ. R. C. PiqueiraB. R. PontesJ. L. P. Felix and Á. M. Bueno, A non-ideal portal frame energy harvester controlled using a pendulum, The European Physical Journal Special Topics, 222 (2013), 1575-1586.  doi: 10.1140/epjst/e2013-01946-4.

[25]

I. Iliuk, R. M. L. R. da Fonseca Brasil, J. M. Balthazar, A. M. Tusset, V. Piccirillo and J. R. C. Piqueira, Potential application in energy harvesting of intermodal energy exchange in a frame: FEM analysis, International Journal of Structural Stability and Dynamics, 14 (2014), 1440027. doi: 10.1142/S0219455414400276.

[26]

N. Jalili, Piezoelectric-Based Vibration Control, Springer US, 2010. doi: 10.1007/978-1-4419-0070-8.

[27]

T. Jiang, Y. Zhang, L. Wang, L. Zhang and G. Song, Monitoring fatigue damage of modular bridge expansion joints using piezoceramic transducers, Sensors, 18 (2018), 3973. doi: 10.3390/s18113973.

[28]

Y. Y. Lim, Z. S. Tang and S. T. Smith, Piezoelectric-based monitoring of the curing of structural adhesives: a novel experimental study, Smart Materials and Structures, 28 (2018), 015016. doi: 10.1088/1361-665X/aaeea4.

[29]

M. Ling, J. Cao, Q. Li and J. Zhuang, Design, pseudostatic model, and PVDF-based motion sensing of a piezo-actuated XYZ flexure manipulator, IEEE/ASME Transactions on Mechatronics, 23 (2018), 2837–2848. doi: 10.1109/TMECH.2018.2871371.

[30]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of bresse systems, SIAM Journal on Mathematical Analysis, 49 (2017), 2468-2495.  doi: 10.1137/15M1039894.

[31]

P. Malatkar, Nonlinear Vibrations of Cantilever Beams and Plates, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2003.

[32]

P. Malatkar and A. H. Nayfeh, Steady-State dynamics of a linear structure weakly coupled to an essentially nonlinear oscillator, Nonlinear Dynamics, 47 (2006), 167-179.  doi: 10.1007/s11071-006-9066-4.

[33] J. C. Maxwell, A Dynamical Theory of the Electromagnetic Field, Scottish Academic Press, Edinburgh, 1982. 
[34] J. C. Maxwell, A Treatise on Electricity and Magnetism, The Clarendon Press, Oxford University Press, New York, 1998. 
[35]

K. Morris and A. O. Ozer, Strong Stabilization of Piezoelectric Beams with Magnetic Effects, 52nd IEEE Conference on Decision and Control, 2013. doi: 10.1109/CDC.2013.6760341.

[36]

K. A. Morris and A. O. Ozer, Modeling and Stabilizability of Voltage-Actuated Piezoelectric Beams with Magnetic Effects, SIAM Journal on Control and Optimization, 52 (2014), 2371–2398. doi: 10.1137/130918319.

[37]

S. Nicaise and C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differential Integral Equations, 21 (2008), 935-958. 

[38]

S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM Journal on Control and Optimization, 45 (2006), 1561–1585. doi: 10.1137/060648891.

[39]

S. Nicaise and J. Valein, Stabilization of second order evolution equations with unbounded feedback with delay, ESAIM: Control, Optimisation and Calculus of Variations, 16 (2009), 420–456. doi: 10.1051/cocv/2009007.

[40]

A. O. Ozer, Further stabilization and exact observability results for voltage-actuated piezoelectric beams with magnetic effects, Mathematics of Control, Signals, and Systems, 27 (2015), 219-244.  doi: 10.1007/s00498-015-0139-0.

[41]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[42]

A. Presas, Y. Luo and Z. Wang, D. Valentin and M. Egusquiza, A review of PZT patches applications in submerged systems, Sensors, 18 (2018), 2251. doi: 10.3390/s18072251.

[43]

J. Przybylski and G. Gasiorski, Nonlinear vibrations of elastic beam with piezoelectric actuators, Journal of Sound and Vibration, 437 (2018), 150-165.  doi: 10.1016/j.jsv.2018.09.005.

[44]

A. J. A. Ramos, C. S. L. Gonçalves and S. S. C. Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect, ESAIM: Mathematical Modelling and Numerical Analysis, 52 (2018), 255–274. doi: 10.1051/m2an/2018004.

[45]

A. J. A. Ramos, M. M. Freitas, D. S. Almeida, S. S. Jesus and T. R. S. Moura, Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect, Zeitschrift Für Angewandte Mathematik und Physik, 70 (2019), Paper No. 60, 14 pp. doi: 10.1007/s00033-019-1106-2.

[46]

A. J. A. RamosA. O. OzerM. M. FreitasD. S. Almeida and J. D. Martins, Exponential stabilitization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback, Zeitschrift Für Angewandte Mathematik und Physik, 72 (2021), 1-15.  doi: 10.1007/s00033-020-01457-8.

[47]

G. Rega, Nonlinear interactions: Analytical, computational, and experimental methods, Wiley Series in Nonlinear Science Wiley, New York 2000. 760 pp, Meccanica, 35 (2000), 583-586. 

[48]

B. Said-Houari and Y. Laskri, A stability result of a Timoshenko system with a delay term in the internal feedback, Applied Mathematics and Computation, 217 (2010), 2857-2869.  doi: 10.1016/j.amc.2010.08.021.

[49]

P. Shivashankar and S. B. Kandagal, Characterization of elastic and electromechanical nonlinearities in piezoceramic plate actuators from vibrations of a piezoelectric-beam, Mechanical Systems and Signal Processing, 116 (2019), 624-640.  doi: 10.1016/j.ymssp.2018.06.063.

[50]

L. T. Tebou and E. Zuazua, Uniform boundary stabilization of the finite difference space discretization of the 1-d wave equation, Advances in Computational Mathematics, 26 (2006), 337-365.  doi: 10.1007/s10444-004-7629-9.

[51]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8.

[52]

H. F. Tiersten, Linear Piezoelectric Plate Vibrations, Springer US, 1969.

[53]

Z. H. Wang and H. Y. Hu, Stabilization of vibration systems via delayed state difference feedback, Journal of Sound and Vibration, 296 (2006), 117-129.  doi: 10.1016/j.jsv.2006.02.013.

[54]

T. Wang, D. Wei, J. Shao, Y. Li and G. Song, Structural stress monitoring based on piezoelectric impedance frequency shift, Journal of Aerospace Engineering, 31 (2018), 04018092. doi: 10.1061/(ASCE)AS.1943-5525.0000900.

[55] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, 2001. 
[56]

Z. ZhouY. NiS. ZhuZ. TongJ. Sun and X. Xu, An accurate and straightforward approach to thermo-electro-mechanical vibration of piezoelectric fiber-reinforced composite cylindrical shells, Composite Structures, 207 (2019), 292-303.  doi: 10.1016/j.compstruct.2018.08.076.

[1]

Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Jeremias dos Santos, Carlos Raposo. Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2959-2978. doi: 10.3934/dcdsb.2021168

[2]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Eraldo R. N. Fonseca. Attractors and pullback dynamics for non-autonomous piezoelectric system with magnetic and thermal effects. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3745-3765. doi: 10.3934/cpaa.2021129

[3]

Mounir Afilal, Abdelaziz Soufyane, Mauro de Lima Santos. Piezoelectric beams with magnetic effect and localized damping. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021056

[4]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[5]

Manoel J. Dos Santos, João C. P. Fortes, Marcos L. Cardoso. Exponential stability for a piezoelectric beam with a magnetic effect and past history. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021283

[6]

Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. On the exponential stabilization of a thermo piezoelectric/piezomagnetic system. Evolution Equations and Control Theory, 2012, 1 (2) : 315-336. doi: 10.3934/eect.2012.1.315

[7]

Cecilia Cavaterra, M. Grasselli. Robust exponential attractors for population dynamics models with infinite time delay. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1051-1076. doi: 10.3934/dcdsb.2006.6.1051

[8]

Zhong-Jie Han, Gen-Qi Xu. Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks and Heterogeneous Media, 2011, 6 (2) : 297-327. doi: 10.3934/nhm.2011.6.297

[9]

Chunxiang Zhao, Chunyan Zhao, Chengkui Zhong. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 935-955. doi: 10.3934/dcdsb.2019197

[10]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1345-1377. doi: 10.3934/dcdsb.2021093

[11]

Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367

[12]

Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations and Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020

[13]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, 2021, 29 (4) : 2599-2618. doi: 10.3934/era.2021003

[14]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[15]

Etsushi Nakaguchi, Koichi Osaki. Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2627-2646. doi: 10.3934/dcdsb.2013.18.2627

[16]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure and Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[17]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[18]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[19]

Lin Yang, Yejuan Wang, Peter E. Kloeden. Exponential attractors for two-dimensional nonlocal diffusion lattice systems with delay. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1811-1831. doi: 10.3934/cpaa.2022048

[20]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (407)
  • HTML views (401)
  • Cited by (0)

[Back to Top]