• Previous Article
    Robustness of global attractors: Abstract framework and application to dissipative wave equations
  • EECT Home
  • This Issue
  • Next Article
    Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling
doi: 10.3934/eect.2021017
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation

School of Mathematics and Statistics, Xidian University, Xi'an 710071, Shaanxi, China

* Corresponding author: Yong-Kui Chang

Received  September 2020 Revised  February 2021 Early access April 2021

Fund Project: This work is partially supported by NSF of Shaanxi Province (2020JM-183)

This paper is mainly concerned with the existence of pseudo S-asymptotically Bloch type periodic solutions to damped evolution equations in Banach spaces. Some existence results for classical Cauchy conditions and nonlocal Cauchy conditions are established through properties of pseudo S-asymptotically Bloch type periodic functions and regularized families. The obtained results show that for each pseudo S-asymptotically Bloch type periodic input forcing disturbance, the output mild solutions to reference equations remain pseudo S-asymptotically Bloch type periodic.

Citation: Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, doi: 10.3934/eect.2021017
References:
[1]

B. de Andrade and C. Lizama, Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771.  doi: 10.1016/j.jmaa.2011.04.078.  Google Scholar

[2]

B. de AndradeC. CuevasC. Silva and H. Soto, Asymptotic periodicity for flexible structural systems and applications, Acta Appl. Math., 143 (2016), 105-164.  doi: 10.1007/s10440-015-0032-3.  Google Scholar

[3]

M. Benchohra and M. S. Souid, $L^1$-Solutions for implicit fractional order differential equations with nonlocal conditions, Filomat, 30 (2016), 1485-1492.  doi: 10.2298/FIL1606485B.  Google Scholar

[4]

I. BenedettiV. Obukhovskii and V. Taddei, Evolution fractional differential problems with impulses and nonlocal conditions, Discrete Contin. Dyn. Syst.-S, 13 (2020), 1899-1919.  doi: 10.3934/dcdss.2020149.  Google Scholar

[5]

D. Brindle and G. M. N'Guérékata, $S$-asymptotically $\omega$-periodic mild solutions to fractional differential equations, Electron. J. Diff. Equ., 2020 (2020), 12pages.  Google Scholar

[6]

S. K. Bose and G. C. Gorain, Stability of the boundary stablisized damped wave equation $y''+\lambda y''' = c^2(\Delta y+\mu\Delta y')$ in a bounded domain in $\mathbb{R}^n$, Indian J. Math., 40 (1998), 1-15.   Google Scholar

[7]

S. K. Bose and G. C. Gorain, Exact controllability and boundary stablization of torsional virations of an internally damped flexible space structure, J. Optim. Theory Appl., 99 (1998), 423-442.  doi: 10.1023/A:1021778428222.  Google Scholar

[8]

L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solutions of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40 (1991), 11-19.  doi: 10.1080/00036819008839989.  Google Scholar

[9]

J. Cao and Z. Huang, Existence of asymptotically periodic solutions for semilinear evolution equations with nonlocal initial conditions, Open Math., 16 (2018), 792-805.  doi: 10.1515/math-2018-0068.  Google Scholar

[10]

Y. K. Chang and Y. Wei, Pseudo $S$-asymptotically Bloch type periodicity with applications to some evolution equations, Z. Anal. Anwend., 40 (2021), 33-50.  doi: 10.4171/ZAA/1671.  Google Scholar

[11]

Y. K. Chang and Y. Wei, $S$-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces, Acta Math. Sci. Ser. B (Engl. Ed.), 41 (2021), 413-425.  doi: 10.1007/s10473-021-0206-1.  Google Scholar

[12]

P. ChenX. Zhang and Y. Li, Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 1-16.  doi: 10.1007/s10883-018-9423-x.  Google Scholar

[13]

C. Cuevas and J. C. de Souza, Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal., 72 (2010), 1683-1689.  doi: 10.1016/j.na.2009.09.007.  Google Scholar

[14]

C. Cuevas and H. Henríquez, Solutions of second order abstract retarded functional differential equations on the line, J. Nonlinear Convex Anal., 12 (2011), 225-240.   Google Scholar

[15]

K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179 (1993), 630-637.  doi: 10.1006/jmaa.1993.1373.  Google Scholar

[16]

G. C. Gorain, Boundary stablization of nonlinear vibrations of a flexible structure in a bounded domain in $\mathbb{R}^N$, J. Math. Anal. Appl., 319 (2006), 635-650.  doi: 10.1016/j.jmaa.2005.06.031.  Google Scholar

[17]

A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003. doi: 10.1007/978-0-387-21593-8.  Google Scholar

[18]

M. F. Hasler and G. M. N'Guérékata, Bloch-periodic functions and some applications, Nonlinear Stud., 21 (2014), 21-30.   Google Scholar

[19]

H. GaoK. WangF. Wei and X. Ding, Massera-type theorem and asymptotically periodic Logisitc equations, Nonlinear Anal. RWA, 7 (2006), 1268-1283.  doi: 10.1016/j.nonrwa.2005.11.008.  Google Scholar

[20]

H. R. HenríquezM. Pierri and P. Táboas, On $S$-asymptotically $\omega$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343 (2008), 1119-1130.  doi: 10.1016/j.jmaa.2008.02.023.  Google Scholar

[21]

C. Lizama and S. Rueda, Nonlocal integrated solutions for a class of abstract evolution equations, Acta Appl. Math., 164 (2019), 165-183.  doi: 10.1007/s10440-018-00231-3.  Google Scholar

[22]

E. R. Oueama-Guengai and G. M. N'Guérékata, On $S$-asymptotically $\omega$-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces, Math. Meth. Appl. Sci., 41 (2018), 9116-9122.  doi: 10.1002/mma.5062.  Google Scholar

[23]

M. Pierri, On $S$-asymptotically $\omega$-periodic functions and applications, Nonliner Anal., 75 (2012), 651-661.  doi: 10.1016/j.na.2011.08.059.  Google Scholar

[24]

M. Pierri and V. Rolnik, On pseudo $S$-asymptotically periodic functions, Bull. Aust. Math. Soc., 87 (2013), 238-254.  doi: 10.1017/S0004972712000950.  Google Scholar

[25]

S. Y. Ren, Electronic States in Crystals of Finite Size: Quantum Confinement of Bloch Waves, Springer-Verlag, New York, 2006. Google Scholar

[26]

Z. XiaD. WangC. F. Wen and J. C. Yao, Pseudo asymptotically periodic mild solutions of semilinear functional integro-differential equations in Banach spaces, Math. Meth. Appl. Sci., 40 (2017), 7333-7355.  doi: 10.1002/mma.4533.  Google Scholar

[27]

M. Yang and Q. R. Wang, Pseudo asymptotically periodic solutions for fractional integro-differential neutral equations, Sci. China Math., 62 (2019), 1705-1718.  doi: 10.1007/s11425-017-9222-2.  Google Scholar

show all references

References:
[1]

B. de Andrade and C. Lizama, Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771.  doi: 10.1016/j.jmaa.2011.04.078.  Google Scholar

[2]

B. de AndradeC. CuevasC. Silva and H. Soto, Asymptotic periodicity for flexible structural systems and applications, Acta Appl. Math., 143 (2016), 105-164.  doi: 10.1007/s10440-015-0032-3.  Google Scholar

[3]

M. Benchohra and M. S. Souid, $L^1$-Solutions for implicit fractional order differential equations with nonlocal conditions, Filomat, 30 (2016), 1485-1492.  doi: 10.2298/FIL1606485B.  Google Scholar

[4]

I. BenedettiV. Obukhovskii and V. Taddei, Evolution fractional differential problems with impulses and nonlocal conditions, Discrete Contin. Dyn. Syst.-S, 13 (2020), 1899-1919.  doi: 10.3934/dcdss.2020149.  Google Scholar

[5]

D. Brindle and G. M. N'Guérékata, $S$-asymptotically $\omega$-periodic mild solutions to fractional differential equations, Electron. J. Diff. Equ., 2020 (2020), 12pages.  Google Scholar

[6]

S. K. Bose and G. C. Gorain, Stability of the boundary stablisized damped wave equation $y''+\lambda y''' = c^2(\Delta y+\mu\Delta y')$ in a bounded domain in $\mathbb{R}^n$, Indian J. Math., 40 (1998), 1-15.   Google Scholar

[7]

S. K. Bose and G. C. Gorain, Exact controllability and boundary stablization of torsional virations of an internally damped flexible space structure, J. Optim. Theory Appl., 99 (1998), 423-442.  doi: 10.1023/A:1021778428222.  Google Scholar

[8]

L. Byszewski and V. Lakshmikantham, Theorem about the existence and uniqueness of a solutions of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40 (1991), 11-19.  doi: 10.1080/00036819008839989.  Google Scholar

[9]

J. Cao and Z. Huang, Existence of asymptotically periodic solutions for semilinear evolution equations with nonlocal initial conditions, Open Math., 16 (2018), 792-805.  doi: 10.1515/math-2018-0068.  Google Scholar

[10]

Y. K. Chang and Y. Wei, Pseudo $S$-asymptotically Bloch type periodicity with applications to some evolution equations, Z. Anal. Anwend., 40 (2021), 33-50.  doi: 10.4171/ZAA/1671.  Google Scholar

[11]

Y. K. Chang and Y. Wei, $S$-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces, Acta Math. Sci. Ser. B (Engl. Ed.), 41 (2021), 413-425.  doi: 10.1007/s10473-021-0206-1.  Google Scholar

[12]

P. ChenX. Zhang and Y. Li, Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 1-16.  doi: 10.1007/s10883-018-9423-x.  Google Scholar

[13]

C. Cuevas and J. C. de Souza, Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal., 72 (2010), 1683-1689.  doi: 10.1016/j.na.2009.09.007.  Google Scholar

[14]

C. Cuevas and H. Henríquez, Solutions of second order abstract retarded functional differential equations on the line, J. Nonlinear Convex Anal., 12 (2011), 225-240.   Google Scholar

[15]

K. Deng, Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179 (1993), 630-637.  doi: 10.1006/jmaa.1993.1373.  Google Scholar

[16]

G. C. Gorain, Boundary stablization of nonlinear vibrations of a flexible structure in a bounded domain in $\mathbb{R}^N$, J. Math. Anal. Appl., 319 (2006), 635-650.  doi: 10.1016/j.jmaa.2005.06.031.  Google Scholar

[17]

A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003. doi: 10.1007/978-0-387-21593-8.  Google Scholar

[18]

M. F. Hasler and G. M. N'Guérékata, Bloch-periodic functions and some applications, Nonlinear Stud., 21 (2014), 21-30.   Google Scholar

[19]

H. GaoK. WangF. Wei and X. Ding, Massera-type theorem and asymptotically periodic Logisitc equations, Nonlinear Anal. RWA, 7 (2006), 1268-1283.  doi: 10.1016/j.nonrwa.2005.11.008.  Google Scholar

[20]

H. R. HenríquezM. Pierri and P. Táboas, On $S$-asymptotically $\omega$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343 (2008), 1119-1130.  doi: 10.1016/j.jmaa.2008.02.023.  Google Scholar

[21]

C. Lizama and S. Rueda, Nonlocal integrated solutions for a class of abstract evolution equations, Acta Appl. Math., 164 (2019), 165-183.  doi: 10.1007/s10440-018-00231-3.  Google Scholar

[22]

E. R. Oueama-Guengai and G. M. N'Guérékata, On $S$-asymptotically $\omega$-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces, Math. Meth. Appl. Sci., 41 (2018), 9116-9122.  doi: 10.1002/mma.5062.  Google Scholar

[23]

M. Pierri, On $S$-asymptotically $\omega$-periodic functions and applications, Nonliner Anal., 75 (2012), 651-661.  doi: 10.1016/j.na.2011.08.059.  Google Scholar

[24]

M. Pierri and V. Rolnik, On pseudo $S$-asymptotically periodic functions, Bull. Aust. Math. Soc., 87 (2013), 238-254.  doi: 10.1017/S0004972712000950.  Google Scholar

[25]

S. Y. Ren, Electronic States in Crystals of Finite Size: Quantum Confinement of Bloch Waves, Springer-Verlag, New York, 2006. Google Scholar

[26]

Z. XiaD. WangC. F. Wen and J. C. Yao, Pseudo asymptotically periodic mild solutions of semilinear functional integro-differential equations in Banach spaces, Math. Meth. Appl. Sci., 40 (2017), 7333-7355.  doi: 10.1002/mma.4533.  Google Scholar

[27]

M. Yang and Q. R. Wang, Pseudo asymptotically periodic solutions for fractional integro-differential neutral equations, Sci. China Math., 62 (2019), 1705-1718.  doi: 10.1007/s11425-017-9222-2.  Google Scholar

[1]

Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations & Control Theory, 2021, 10 (4) : 733-748. doi: 10.3934/eect.2020089

[2]

Rui Zhang, Yong-Kui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5525-5537. doi: 10.3934/dcds.2013.33.5525

[3]

Chuangxia Huang, Hedi Yang, Jinde Cao. Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1259-1272. doi: 10.3934/dcdss.2020372

[4]

Chuangxia Huang, Hua Zhang, Lihong Huang. Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3337-3349. doi: 10.3934/cpaa.2019150

[5]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[6]

Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529

[7]

Juraj Földes, Peter Poláčik. On asymptotically symmetric parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 673-689. doi: 10.3934/nhm.2012.7.673

[8]

Ewa Schmeidel, Karol Gajda, Tomasz Gronek. On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2681-2690. doi: 10.3934/dcdsb.2014.19.2681

[9]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[10]

Jacson Simsen, Mariza Stefanello Simsen. On asymptotically autonomous dynamics for multivalued evolution problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3557-3567. doi: 10.3934/dcdsb.2018278

[11]

Gang Cai, Yekini Shehu, Olaniyi S. Iyiola. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021095

[12]

Goro Akagi. Doubly nonlinear evolution equations and Bean's critical-state model for type-II superconductivity. Conference Publications, 2005, 2005 (Special) : 30-39. doi: 10.3934/proc.2005.2005.30

[13]

Jerry Bona, Jiahong Wu. Temporal growth and eventual periodicity for dispersive wave equations in a quarter plane. Discrete & Continuous Dynamical Systems, 2009, 23 (4) : 1141-1168. doi: 10.3934/dcds.2009.23.1141

[14]

Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4145-4167. doi: 10.3934/dcdsb.2019054

[15]

Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093

[16]

Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153

[17]

Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4347-4377. doi: 10.3934/cpaa.2021163

[18]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[19]

Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763

[20]

Carlos Lizama, Luz Roncal. Hölder-Lebesgue regularity and almost periodicity for semidiscrete equations with a fractional Laplacian. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1365-1403. doi: 10.3934/dcds.2018056

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (226)
  • HTML views (320)
  • Cited by (0)

Other articles
by authors

[Back to Top]