-
Previous Article
Initial boundary value problem for a strongly damped wave equation with a general nonlinearity
- EECT Home
- This Issue
- Next Article
Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation
School of Mathematics and Statistics, Xidian University, Xi'an 710071, Shaanxi, China |
This paper is mainly concerned with the existence of pseudo S-asymptotically Bloch type periodic solutions to damped evolution equations in Banach spaces. Some existence results for classical Cauchy conditions and nonlocal Cauchy conditions are established through properties of pseudo S-asymptotically Bloch type periodic functions and regularized families. The obtained results show that for each pseudo S-asymptotically Bloch type periodic input forcing disturbance, the output mild solutions to reference equations remain pseudo S-asymptotically Bloch type periodic.
References:
[1] |
B. de Andrade and C. Lizama,
Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771.
doi: 10.1016/j.jmaa.2011.04.078. |
[2] |
B. de Andrade, C. Cuevas, C. Silva and H. Soto,
Asymptotic periodicity for flexible structural systems and applications, Acta Appl. Math., 143 (2016), 105-164.
doi: 10.1007/s10440-015-0032-3. |
[3] |
M. Benchohra and M. S. Souid,
$L^1$-Solutions for implicit fractional order differential equations with nonlocal conditions, Filomat, 30 (2016), 1485-1492.
doi: 10.2298/FIL1606485B. |
[4] |
I. Benedetti, V. Obukhovskii and V. Taddei,
Evolution fractional differential problems with impulses and nonlocal conditions, Discrete Contin. Dyn. Syst.-S, 13 (2020), 1899-1919.
doi: 10.3934/dcdss.2020149. |
[5] |
D. Brindle and G. M. N'Guérékata, $S$-asymptotically $\omega$-periodic mild solutions to fractional differential equations, Electron. J. Diff. Equ., 2020 (2020), 12pages. |
[6] |
S. K. Bose and G. C. Gorain,
Stability of the boundary stablisized damped wave equation $y''+\lambda y''' = c^2(\Delta y+\mu\Delta y')$ in a bounded domain in $\mathbb{R}^n$, Indian J. Math., 40 (1998), 1-15.
|
[7] |
S. K. Bose and G. C. Gorain,
Exact controllability and boundary stablization of torsional virations of an internally damped flexible space structure, J. Optim. Theory Appl., 99 (1998), 423-442.
doi: 10.1023/A:1021778428222. |
[8] |
L. Byszewski and V. Lakshmikantham,
Theorem about the existence and uniqueness of a solutions of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40 (1991), 11-19.
doi: 10.1080/00036819008839989. |
[9] |
J. Cao and Z. Huang,
Existence of asymptotically periodic solutions for semilinear evolution equations with nonlocal initial conditions, Open Math., 16 (2018), 792-805.
doi: 10.1515/math-2018-0068. |
[10] |
Y. K. Chang and Y. Wei,
Pseudo $S$-asymptotically Bloch type periodicity with applications to some evolution equations, Z. Anal. Anwend., 40 (2021), 33-50.
doi: 10.4171/ZAA/1671. |
[11] |
Y. K. Chang and Y. Wei,
$S$-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces, Acta Math. Sci. Ser. B (Engl. Ed.), 41 (2021), 413-425.
doi: 10.1007/s10473-021-0206-1. |
[12] |
P. Chen, X. Zhang and Y. Li,
Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 1-16.
doi: 10.1007/s10883-018-9423-x. |
[13] |
C. Cuevas and J. C. de Souza,
Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal., 72 (2010), 1683-1689.
doi: 10.1016/j.na.2009.09.007. |
[14] |
C. Cuevas and H. Henríquez,
Solutions of second order abstract retarded functional differential equations on the line, J. Nonlinear Convex Anal., 12 (2011), 225-240.
|
[15] |
K. Deng,
Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179 (1993), 630-637.
doi: 10.1006/jmaa.1993.1373. |
[16] |
G. C. Gorain,
Boundary stablization of nonlinear vibrations of a flexible structure in a bounded domain in $\mathbb{R}^N$, J. Math. Anal. Appl., 319 (2006), 635-650.
doi: 10.1016/j.jmaa.2005.06.031. |
[17] |
A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
doi: 10.1007/978-0-387-21593-8. |
[18] |
M. F. Hasler and G. M. N'Guérékata,
Bloch-periodic functions and some applications, Nonlinear Stud., 21 (2014), 21-30.
|
[19] |
H. Gao, K. Wang, F. Wei and X. Ding,
Massera-type theorem and asymptotically periodic Logisitc equations, Nonlinear Anal. RWA, 7 (2006), 1268-1283.
doi: 10.1016/j.nonrwa.2005.11.008. |
[20] |
H. R. Henríquez, M. Pierri and P. Táboas,
On $S$-asymptotically $\omega$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343 (2008), 1119-1130.
doi: 10.1016/j.jmaa.2008.02.023. |
[21] |
C. Lizama and S. Rueda,
Nonlocal integrated solutions for a class of abstract evolution equations, Acta Appl. Math., 164 (2019), 165-183.
doi: 10.1007/s10440-018-00231-3. |
[22] |
E. R. Oueama-Guengai and G. M. N'Guérékata,
On $S$-asymptotically $\omega$-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces, Math. Meth. Appl. Sci., 41 (2018), 9116-9122.
doi: 10.1002/mma.5062. |
[23] |
M. Pierri,
On $S$-asymptotically $\omega$-periodic functions and applications, Nonliner Anal., 75 (2012), 651-661.
doi: 10.1016/j.na.2011.08.059. |
[24] |
M. Pierri and V. Rolnik,
On pseudo $S$-asymptotically periodic functions, Bull. Aust. Math. Soc., 87 (2013), 238-254.
doi: 10.1017/S0004972712000950. |
[25] |
S. Y. Ren, Electronic States in Crystals of Finite Size: Quantum Confinement of Bloch Waves, Springer-Verlag, New York, 2006. |
[26] |
Z. Xia, D. Wang, C. F. Wen and J. C. Yao,
Pseudo asymptotically periodic mild solutions of semilinear functional integro-differential equations in Banach spaces, Math. Meth. Appl. Sci., 40 (2017), 7333-7355.
doi: 10.1002/mma.4533. |
[27] |
M. Yang and Q. R. Wang,
Pseudo asymptotically periodic solutions for fractional integro-differential neutral equations, Sci. China Math., 62 (2019), 1705-1718.
doi: 10.1007/s11425-017-9222-2. |
show all references
References:
[1] |
B. de Andrade and C. Lizama,
Existence of asymptotically almost periodic solutions for damped wave equations, J. Math. Anal. Appl., 382 (2011), 761-771.
doi: 10.1016/j.jmaa.2011.04.078. |
[2] |
B. de Andrade, C. Cuevas, C. Silva and H. Soto,
Asymptotic periodicity for flexible structural systems and applications, Acta Appl. Math., 143 (2016), 105-164.
doi: 10.1007/s10440-015-0032-3. |
[3] |
M. Benchohra and M. S. Souid,
$L^1$-Solutions for implicit fractional order differential equations with nonlocal conditions, Filomat, 30 (2016), 1485-1492.
doi: 10.2298/FIL1606485B. |
[4] |
I. Benedetti, V. Obukhovskii and V. Taddei,
Evolution fractional differential problems with impulses and nonlocal conditions, Discrete Contin. Dyn. Syst.-S, 13 (2020), 1899-1919.
doi: 10.3934/dcdss.2020149. |
[5] |
D. Brindle and G. M. N'Guérékata, $S$-asymptotically $\omega$-periodic mild solutions to fractional differential equations, Electron. J. Diff. Equ., 2020 (2020), 12pages. |
[6] |
S. K. Bose and G. C. Gorain,
Stability of the boundary stablisized damped wave equation $y''+\lambda y''' = c^2(\Delta y+\mu\Delta y')$ in a bounded domain in $\mathbb{R}^n$, Indian J. Math., 40 (1998), 1-15.
|
[7] |
S. K. Bose and G. C. Gorain,
Exact controllability and boundary stablization of torsional virations of an internally damped flexible space structure, J. Optim. Theory Appl., 99 (1998), 423-442.
doi: 10.1023/A:1021778428222. |
[8] |
L. Byszewski and V. Lakshmikantham,
Theorem about the existence and uniqueness of a solutions of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40 (1991), 11-19.
doi: 10.1080/00036819008839989. |
[9] |
J. Cao and Z. Huang,
Existence of asymptotically periodic solutions for semilinear evolution equations with nonlocal initial conditions, Open Math., 16 (2018), 792-805.
doi: 10.1515/math-2018-0068. |
[10] |
Y. K. Chang and Y. Wei,
Pseudo $S$-asymptotically Bloch type periodicity with applications to some evolution equations, Z. Anal. Anwend., 40 (2021), 33-50.
doi: 10.4171/ZAA/1671. |
[11] |
Y. K. Chang and Y. Wei,
$S$-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces, Acta Math. Sci. Ser. B (Engl. Ed.), 41 (2021), 413-425.
doi: 10.1007/s10473-021-0206-1. |
[12] |
P. Chen, X. Zhang and Y. Li,
Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control Syst., 26 (2020), 1-16.
doi: 10.1007/s10883-018-9423-x. |
[13] |
C. Cuevas and J. C. de Souza,
Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal., 72 (2010), 1683-1689.
doi: 10.1016/j.na.2009.09.007. |
[14] |
C. Cuevas and H. Henríquez,
Solutions of second order abstract retarded functional differential equations on the line, J. Nonlinear Convex Anal., 12 (2011), 225-240.
|
[15] |
K. Deng,
Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions, J. Math. Anal. Appl., 179 (1993), 630-637.
doi: 10.1006/jmaa.1993.1373. |
[16] |
G. C. Gorain,
Boundary stablization of nonlinear vibrations of a flexible structure in a bounded domain in $\mathbb{R}^N$, J. Math. Anal. Appl., 319 (2006), 635-650.
doi: 10.1016/j.jmaa.2005.06.031. |
[17] |
A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003.
doi: 10.1007/978-0-387-21593-8. |
[18] |
M. F. Hasler and G. M. N'Guérékata,
Bloch-periodic functions and some applications, Nonlinear Stud., 21 (2014), 21-30.
|
[19] |
H. Gao, K. Wang, F. Wei and X. Ding,
Massera-type theorem and asymptotically periodic Logisitc equations, Nonlinear Anal. RWA, 7 (2006), 1268-1283.
doi: 10.1016/j.nonrwa.2005.11.008. |
[20] |
H. R. Henríquez, M. Pierri and P. Táboas,
On $S$-asymptotically $\omega$-periodic functions on Banach spaces and applications, J. Math. Anal. Appl., 343 (2008), 1119-1130.
doi: 10.1016/j.jmaa.2008.02.023. |
[21] |
C. Lizama and S. Rueda,
Nonlocal integrated solutions for a class of abstract evolution equations, Acta Appl. Math., 164 (2019), 165-183.
doi: 10.1007/s10440-018-00231-3. |
[22] |
E. R. Oueama-Guengai and G. M. N'Guérékata,
On $S$-asymptotically $\omega$-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces, Math. Meth. Appl. Sci., 41 (2018), 9116-9122.
doi: 10.1002/mma.5062. |
[23] |
M. Pierri,
On $S$-asymptotically $\omega$-periodic functions and applications, Nonliner Anal., 75 (2012), 651-661.
doi: 10.1016/j.na.2011.08.059. |
[24] |
M. Pierri and V. Rolnik,
On pseudo $S$-asymptotically periodic functions, Bull. Aust. Math. Soc., 87 (2013), 238-254.
doi: 10.1017/S0004972712000950. |
[25] |
S. Y. Ren, Electronic States in Crystals of Finite Size: Quantum Confinement of Bloch Waves, Springer-Verlag, New York, 2006. |
[26] |
Z. Xia, D. Wang, C. F. Wen and J. C. Yao,
Pseudo asymptotically periodic mild solutions of semilinear functional integro-differential equations in Banach spaces, Math. Meth. Appl. Sci., 40 (2017), 7333-7355.
doi: 10.1002/mma.4533. |
[27] |
M. Yang and Q. R. Wang,
Pseudo asymptotically periodic solutions for fractional integro-differential neutral equations, Sci. China Math., 62 (2019), 1705-1718.
doi: 10.1007/s11425-017-9222-2. |
[1] |
Pallavi Bedi, Anoop Kumar, Thabet Abdeljawad, Aziz Khan. S-asymptotically $ \omega $-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations and Control Theory, 2021, 10 (4) : 733-748. doi: 10.3934/eect.2020089 |
[2] |
Rui Zhang, Yong-Kui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5525-5537. doi: 10.3934/dcds.2013.33.5525 |
[3] |
Chuangxia Huang, Hedi Yang, Jinde Cao. Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1259-1272. doi: 10.3934/dcdss.2020372 |
[4] |
Chuangxia Huang, Hua Zhang, Lihong Huang. Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3337-3349. doi: 10.3934/cpaa.2019150 |
[5] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[6] |
Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529 |
[7] |
Juraj Földes, Peter Poláčik. On asymptotically symmetric parabolic equations. Networks and Heterogeneous Media, 2012, 7 (4) : 673-689. doi: 10.3934/nhm.2012.7.673 |
[8] |
Ewa Schmeidel, Karol Gajda, Tomasz Gronek. On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2681-2690. doi: 10.3934/dcdsb.2014.19.2681 |
[9] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations and Control Theory, 2022, 11 (1) : 225-238. doi: 10.3934/eect.2020109 |
[10] |
Jacson Simsen, Mariza Stefanello Simsen. On asymptotically autonomous dynamics for multivalued evolution problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3557-3567. doi: 10.3934/dcdsb.2018278 |
[11] |
Goro Akagi. Doubly nonlinear evolution equations and Bean's critical-state model for type-II superconductivity. Conference Publications, 2005, 2005 (Special) : 30-39. doi: 10.3934/proc.2005.2005.30 |
[12] |
Gang Cai, Yekini Shehu, Olaniyi S. Iyiola. Inertial Tseng's extragradient method for solving variational inequality problems of pseudo-monotone and non-Lipschitz operators. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021095 |
[13] |
Jerry Bona, Jiahong Wu. Temporal growth and eventual periodicity for dispersive wave equations in a quarter plane. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1141-1168. doi: 10.3934/dcds.2009.23.1141 |
[14] |
Renhai Wang, Yangrong Li. Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4145-4167. doi: 10.3934/dcdsb.2019054 |
[15] |
Pablo Raúl Stinga, Chao Zhang. Harnack's inequality for fractional nonlocal equations. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3153-3170. doi: 10.3934/dcds.2013.33.3153 |
[16] |
Leandro M. Del Pezzo, Julio D. Rossi. Eigenvalues for a nonlocal pseudo $p-$Laplacian. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6737-6765. doi: 10.3934/dcds.2016093 |
[17] |
Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4347-4377. doi: 10.3934/cpaa.2021163 |
[18] |
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473 |
[19] |
Dinh Nguyen Duy Hai. Hölder-Logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1715-1734. doi: 10.3934/cpaa.2022043 |
[20] |
Augusto Visintin. Weak structural stability of pseudo-monotone equations. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2763-2796. doi: 10.3934/dcds.2015.35.2763 |
2020 Impact Factor: 1.081
Tools
Metrics
Other articles
by authors
[Back to Top]