• Previous Article
    Exact controllability and stabilization for a general internal wave system of Benjamin-Ono type
  • EECT Home
  • This Issue
  • Next Article
    Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity
doi: 10.3934/eect.2021032
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Local stabilization of viscous Burgers equation with memory

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India

* Corresponding author: Debanjana Mitra

Received  August 2020 Revised  March 2021 Early access July 2021

Fund Project: The second author acknowledges the support by an Inspire Faculty Fellowship, RD/0118- DSTIN40-001

In this article, we study the local stabilization of the viscous Burgers equation with memory around the steady state zero using localized interior controls. We first consider the linearized equation around zero which corresponds to a system coupled between a parabolic equation and an ODE. We show the feedback stabilization of the system with any exponential decay $ -\omega $, where $ \omega\in (0, \omega_0) $, for some $ \omega_0>0 $, using a finite dimensional localized interior control. The control is obtained from the solution of a suitable degenerate Riccati equation. We do an explicit analysis of the spectrum of the corresponding linearized operator. In fact, $ \omega_0 $ is the unique accumulation point of the spectrum of the operator. We also show that the system is not stabilizable with exponential decay $ -\omega $, where $ \omega>\omega_0 $, using any $ L^2 $-control. Finally, we obtain the local stabilization result for the nonlinear system by means of the feedback control stabilizing the linearized system using the Banach fixed point theorem.

Citation: Wasim Akram, Debanjana Mitra. Local stabilization of viscous Burgers equation with memory. Evolution Equations & Control Theory, doi: 10.3934/eect.2021032
References:
[1]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system, SIAM J. Control Optim., 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[2]

V. Barbu and M. Iannelli, Controllability of the heat equation with memory, Differential Integral Equations, 13 (2000), 1393-1412.   Google Scholar

[3]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), x+128 pp. doi: 10.1090/memo/0852.  Google Scholar

[4]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[5]

A. Bensoussan, G. D. Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional System., 2$^{nd}$ edition, Birkhäuser Boston, 2007. doi: 10.1007/978-0-8176-4581-6.  Google Scholar

[6]

T. Breiten and K. Kunisch, Riccati-based feedback control of the monodomain equations with the Fitzhugh-Nagumo model, SICON, 52 (2014), 4057-4081.  doi: 10.1137/140964552.  Google Scholar

[7]

T. Breiten and K. Kunisch, Compensator design for the monodomain equations with the Fitzhugh-Nagumo model, ESAIM: COCV, 23 (2017), 241-262.  doi: 10.1051/cocv/2015047.  Google Scholar

[8]

J.-M. BuchotJ.-P. Raymond and J. Tiago, Coupling estimation and control for a two dimensional Burgers type equation, ESAIM Control Optim. Calc. Var., 21 (2015), 535-560.  doi: 10.1051/cocv/2014037.  Google Scholar

[9]

F. W. Chaves-SilvaX. Zhang and E. Zuazua, Controllability of evolution equations with memory, SIAM J. Control Optim., 55 (2017), 2437-2459.  doi: 10.1137/151004239.  Google Scholar

[10]

B. Coleman and M. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.  doi: 10.1007/BF01596912.  Google Scholar

[11]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 2, Functional and Variational Methods, Translated from the French by Ian N. Sneddon, Springer-Verlag, 1988.  Google Scholar

[12]

S. Guerrero and O. Yu. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288-300.  doi: 10.1051/cocv/2012013.  Google Scholar

[13]

M. Gurtin and A. Pipkin, A general theory of heat conduction with finite wave speed, Arch. Ration. Mech. Anal., 31 (1968), 113-126.  doi: 10.1007/BF00281373.  Google Scholar

[14]

A. Halanay and L. Pandolfi, Lack of controllability of the heat equation with memory, Systems Control Lett., 61 (2012), 999-1002.  doi: 10.1016/j.sysconle.2012.07.002.  Google Scholar

[15]

S. Ivanov and L. Pandolfi, Heat equation with memory: lack of controllability to rest, J. Math. Anal. Appl., 355 (2009), 1-11.  doi: 10.1016/j.jmaa.2009.01.008.  Google Scholar

[16]

S. Kesavan, Topics in Functional Analysis and Applications, , 2$^{nd}$ edition, New Age International Publishers, 2015. Google Scholar

[17]

S. Kesavan and J. P. Raymond, On a degenerate Riccati equation, Control Cybernet., 38 (2009), 1393-1410.   Google Scholar

[18]

M. Krstic, On global stabilization of Burgers' equation by boundary control, Systems Control Lett., 37 (1999), 123-141.  doi: 10.1016/S0167-6911(99)00013-4.  Google Scholar

[19] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I., Abstract parabolic systems. Encyclopedia of Mathematics and its Applications, 74., Cambridge University Press, Cambridge, 2000.   Google Scholar
[20] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. II., Abstract hyperbolic-like systems over a finite time horizon. Encyclopedia of Mathematics and its Applications, 75., Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511574801.002.  Google Scholar
[21]

L. LiX. Zhou and H. Gao, The stability and exponential stabilization of the heat equation with memory, J. Math. Anal. Appl., 466 (2018), 199-214.  doi: 10.1016/j.jmaa.2018.05.078.  Google Scholar

[22]

I. Munteanu, Stabilization of semilinear heat equations, with fading memory, by boundary feedbacks, J. DifferentialEquations, 259 (2015), 454-472.  doi: 10.1016/j.jde.2015.02.010.  Google Scholar

[23]

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM J. Control Optim., 45 (2006), 790-828.  doi: 10.1137/050628726.  Google Scholar

[24]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Second edition. Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004.  Google Scholar

[25]

M. Renardy, Mathematical analysis of viscoelastic fluids, Handbook of Differential Equations: Evolutionary Equations, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 4 (2008), 229–265. doi: 10.1016/S1874-5717(08)00005-4.  Google Scholar

[26]

L. ThevenetJ.-M. Buchot and J.-P. Raymond, Nonlinear feedback stabilization of a two dimensional Burgers equation, ESAIM: COCV., 16 (2010), 929-955.  doi: 10.1051/cocv/2009028.  Google Scholar

[27]

R. Triggiani, On the stabilizability problem in Banach space, J.Math. Anal. Appl., 52 (1975), 383-403.  doi: 10.1016/0022-247X(75)90067-0.  Google Scholar

[28]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, , Birkhäuser Advanced Texts, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[29]

X. Zhou and H. Gao, Interior approximate and null controllability of the heat equation with memory, Comput. Math. Appl., 67 (2014), 602-613.  doi: 10.1016/j.camwa.2013.12.005.  Google Scholar

[30]

J. Zabczyk, Mathematical Control Theory: An Introduction, Reprint of the 1995 edition, Modern Birkhäuser Classics, Birkäuser Boston, Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

show all references

References:
[1]

M. Badra and T. Takahashi, Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: Application to the Navier-Stokes system, SIAM J. Control Optim., 49 (2011), 420-463.  doi: 10.1137/090778146.  Google Scholar

[2]

V. Barbu and M. Iannelli, Controllability of the heat equation with memory, Differential Integral Equations, 13 (2000), 1393-1412.   Google Scholar

[3]

V. Barbu, I. Lasiecka and R. Triggiani, Tangential boundary stabilization of Navier-Stokes equations, Mem. Amer. Math. Soc., 181 (2006), x+128 pp. doi: 10.1090/memo/0852.  Google Scholar

[4]

V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J., 53 (2004), 1443-1494.  doi: 10.1512/iumj.2004.53.2445.  Google Scholar

[5]

A. Bensoussan, G. D. Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional System., 2$^{nd}$ edition, Birkhäuser Boston, 2007. doi: 10.1007/978-0-8176-4581-6.  Google Scholar

[6]

T. Breiten and K. Kunisch, Riccati-based feedback control of the monodomain equations with the Fitzhugh-Nagumo model, SICON, 52 (2014), 4057-4081.  doi: 10.1137/140964552.  Google Scholar

[7]

T. Breiten and K. Kunisch, Compensator design for the monodomain equations with the Fitzhugh-Nagumo model, ESAIM: COCV, 23 (2017), 241-262.  doi: 10.1051/cocv/2015047.  Google Scholar

[8]

J.-M. BuchotJ.-P. Raymond and J. Tiago, Coupling estimation and control for a two dimensional Burgers type equation, ESAIM Control Optim. Calc. Var., 21 (2015), 535-560.  doi: 10.1051/cocv/2014037.  Google Scholar

[9]

F. W. Chaves-SilvaX. Zhang and E. Zuazua, Controllability of evolution equations with memory, SIAM J. Control Optim., 55 (2017), 2437-2459.  doi: 10.1137/151004239.  Google Scholar

[10]

B. Coleman and M. Gurtin, Equipresence and constitutive equations for rigid heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.  doi: 10.1007/BF01596912.  Google Scholar

[11]

R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Volume 2, Functional and Variational Methods, Translated from the French by Ian N. Sneddon, Springer-Verlag, 1988.  Google Scholar

[12]

S. Guerrero and O. Yu. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM Control Optim. Calc. Var., 19 (2013), 288-300.  doi: 10.1051/cocv/2012013.  Google Scholar

[13]

M. Gurtin and A. Pipkin, A general theory of heat conduction with finite wave speed, Arch. Ration. Mech. Anal., 31 (1968), 113-126.  doi: 10.1007/BF00281373.  Google Scholar

[14]

A. Halanay and L. Pandolfi, Lack of controllability of the heat equation with memory, Systems Control Lett., 61 (2012), 999-1002.  doi: 10.1016/j.sysconle.2012.07.002.  Google Scholar

[15]

S. Ivanov and L. Pandolfi, Heat equation with memory: lack of controllability to rest, J. Math. Anal. Appl., 355 (2009), 1-11.  doi: 10.1016/j.jmaa.2009.01.008.  Google Scholar

[16]

S. Kesavan, Topics in Functional Analysis and Applications, , 2$^{nd}$ edition, New Age International Publishers, 2015. Google Scholar

[17]

S. Kesavan and J. P. Raymond, On a degenerate Riccati equation, Control Cybernet., 38 (2009), 1393-1410.   Google Scholar

[18]

M. Krstic, On global stabilization of Burgers' equation by boundary control, Systems Control Lett., 37 (1999), 123-141.  doi: 10.1016/S0167-6911(99)00013-4.  Google Scholar

[19] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I., Abstract parabolic systems. Encyclopedia of Mathematics and its Applications, 74., Cambridge University Press, Cambridge, 2000.   Google Scholar
[20] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. II., Abstract hyperbolic-like systems over a finite time horizon. Encyclopedia of Mathematics and its Applications, 75., Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511574801.002.  Google Scholar
[21]

L. LiX. Zhou and H. Gao, The stability and exponential stabilization of the heat equation with memory, J. Math. Anal. Appl., 466 (2018), 199-214.  doi: 10.1016/j.jmaa.2018.05.078.  Google Scholar

[22]

I. Munteanu, Stabilization of semilinear heat equations, with fading memory, by boundary feedbacks, J. DifferentialEquations, 259 (2015), 454-472.  doi: 10.1016/j.jde.2015.02.010.  Google Scholar

[23]

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM J. Control Optim., 45 (2006), 790-828.  doi: 10.1137/050628726.  Google Scholar

[24]

M. Renardy and R. C. Rogers, An Introduction to Partial Differential Equations, Second edition. Texts in Applied Mathematics, 13. Springer-Verlag, New York, 2004.  Google Scholar

[25]

M. Renardy, Mathematical analysis of viscoelastic fluids, Handbook of Differential Equations: Evolutionary Equations, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 4 (2008), 229–265. doi: 10.1016/S1874-5717(08)00005-4.  Google Scholar

[26]

L. ThevenetJ.-M. Buchot and J.-P. Raymond, Nonlinear feedback stabilization of a two dimensional Burgers equation, ESAIM: COCV., 16 (2010), 929-955.  doi: 10.1051/cocv/2009028.  Google Scholar

[27]

R. Triggiani, On the stabilizability problem in Banach space, J.Math. Anal. Appl., 52 (1975), 383-403.  doi: 10.1016/0022-247X(75)90067-0.  Google Scholar

[28]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, , Birkhäuser Advanced Texts, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[29]

X. Zhou and H. Gao, Interior approximate and null controllability of the heat equation with memory, Comput. Math. Appl., 67 (2014), 602-613.  doi: 10.1016/j.camwa.2013.12.005.  Google Scholar

[30]

J. Zabczyk, Mathematical Control Theory: An Introduction, Reprint of the 1995 edition, Modern Birkhäuser Classics, Birkäuser Boston, Inc., Boston, MA, 2008. doi: 10.1007/978-0-8176-4733-9.  Google Scholar

Figure 1.  Spectrum of $ A $ in one-dimension with $ \Omega = (0, 10) $
Figure 2.  Spectrum after feedback stabilization, i.e, Spectrum of $ (A-BB^*P) $ in one dimension with $ \Omega = (0, 10) $
[1]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[2]

Ngoc Minh Trang Vu, Laurent Lefèvre. Finite rank distributed control for the resistive diffusion equation using damping assignment. Evolution Equations & Control Theory, 2015, 4 (2) : 205-220. doi: 10.3934/eect.2015.4.205

[3]

Ionuţ Munteanu. Exponential stabilization of the stochastic Burgers equation by boundary proportional feedback. Discrete & Continuous Dynamical Systems, 2019, 39 (4) : 2173-2185. doi: 10.3934/dcds.2019091

[4]

Muhammad I. Mustafa. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1179-1192. doi: 10.3934/dcds.2015.35.1179

[5]

Chun-Hsiung Hsia, Xiaoming Wang. On a Burgers' type equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1121-1139. doi: 10.3934/dcdsb.2006.6.1121

[6]

Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 449-484. doi: 10.3934/dcds.2018021

[7]

Evelyn Lunasin, Edriss S. Titi. Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study. Evolution Equations & Control Theory, 2017, 6 (4) : 535-557. doi: 10.3934/eect.2017027

[8]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[9]

Zhi-Xue Zhao, Mapundi K. Banda, Bao-Zhu Guo. Boundary switch on/off control approach to simultaneous identification of diffusion coefficient and initial state for one-dimensional heat equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2539-2554. doi: 10.3934/dcdsb.2020021

[10]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control & Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[11]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[12]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[13]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[14]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[15]

Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1145-1185. doi: 10.3934/dcdss.2020068

[16]

Xiaorui Wang, Genqi Xu. Uniform stabilization of a wave equation with partial Dirichlet delayed control. Evolution Equations & Control Theory, 2020, 9 (2) : 509-533. doi: 10.3934/eect.2020022

[17]

Andrei Fursikov, Lyubov Shatina. Nonlocal stabilization by starting control of the normal equation generated by Helmholtz system. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1187-1242. doi: 10.3934/dcds.2018050

[18]

Luz de Teresa, Enrique Zuazua. Identification of the class of initial data for the insensitizing control of the heat equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 457-471. doi: 10.3934/cpaa.2009.8.457

[19]

Shui-Hung Hou, Qing-Xu Yan. Nonlinear locally distributed feedback stabilization. Journal of Industrial & Management Optimization, 2008, 4 (1) : 67-79. doi: 10.3934/jimo.2008.4.67

[20]

Zhaosheng Feng, Qingguo Meng. Exact solution for a two-dimensional KDV-Burgers-type equation with nonlinear terms of any order. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 285-291. doi: 10.3934/dcdsb.2007.7.285

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (103)
  • HTML views (149)
  • Cited by (0)

Other articles
by authors

[Back to Top]