June  2022, 11(3): 975-1000. doi: 10.3934/eect.2021033

Solvability of doubly nonlinear parabolic equation with p-laplacian

Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita, Japan

Received  November 2020 Published  June 2022 Early access  July 2021

Fund Project: The author is supported by the Fund for the Promotion of Joint International Research (Fostering Joint International Research (B)) #18KK0073, JSPS Japan

In this paper, we consider a doubly nonlinear parabolic equation $ \partial _t \beta (u) - \nabla \cdot \alpha (x , \nabla u) \ni f $ with the homogeneous Dirichlet boundary condition in a bounded domain, where $ \beta : \mathbb{R} \to 2 ^{ \mathbb{R} } $ is a maximal monotone graph satisfying $ 0 \in \beta (0) $ and $ \nabla \cdot \alpha (x , \nabla u ) $ stands for a generalized $ p $-Laplacian. Existence of solution to the initial boundary value problem of this equation has been studied in an enormous number of papers for the case where single-valuedness, coerciveness, or some growth condition is imposed on $ \beta $. However, there are a few results for the case where such assumptions are removed and it is difficult to construct an abstract theory which covers the case for $ 1 < p < 2 $. Main purpose of this paper is to show the solvability of the initial boundary value problem for any $ p \in (1, \infty ) $ without any conditions for $ \beta $ except $ 0 \in \beta (0) $. We also discuss the uniqueness of solution by using properties of entropy solution.

Citation: Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations and Control Theory, 2022, 11 (3) : 975-1000. doi: 10.3934/eect.2021033
References:
[1]

S. Aizicovici and V. M. Hokkanen, Doubly nonlinear equations with unbounded operators, Nonlinear Anal., 58 (2004), 591-607.  doi: 10.1016/j.na.2003.10.029.

[2]

G. Akagi and U. Stefanelli, Doubly nonlinear equations as convex minimization, SIAM J. Math. Anal., 46 (2014), 1922-1945.  doi: 10.1137/13091909X.

[3]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.  doi: 10.1007/BF01176474.

[4] L. AmbrosioN. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000. 
[5]

K. Ammar, Renormalized entropy solutions for degenerate nonlinear evolution problems, Electron. J. Differential Equations, 147 (2009), 32 pp.

[6]

K. Ammar and P. Wittbold, Existence of renormalized solutions of degenerate elliptic-parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 477-496.  doi: 10.1017/S0308210500002493.

[7]

F. AndreuJ. M. MazonJ. Toledo and N. Igbida, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions, Interfaces Free Bound., 8 (2006), 447-479.  doi: 10.4171/IFB/151.

[8]

H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.

[9]

A. Bamberger, Étude d'une équation doublement non linéaire, J. Functional Analysis, 24 (1977), 148-155.  doi: 10.1016/0022-1236(77)90051-9.

[10]

V. Barbu, Existence for nonlinear Volterra equations in Hilbert spaces, SIAM J. Math. Anal., 10 (1979), 552-569.  doi: 10.1137/0510052.

[11]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.

[12]

V. Barbu and A. Favini, Existence for an implicit nonlinear differential equation, Nonlinear Anal., 32 (1998), 33-40.  doi: 10.1016/S0362-546X(97)00450-1.

[13]

P. Bénilan, Equations d'évolution dans un Espace de Banach Quelconque et Applications, Thèse d'état, Orsay, 1972.

[14]

P. Bénilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems, Adv. Differential Equations, 1 (1996), 1053-1073. 

[15]

F. Bernis, Existence results for doubly nonlinear higher order parabolic equations on unbounded domains, Math. Ann., 279 (1988), 373-394.  doi: 10.1007/BF01456275.

[16]

H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Nonlinear Functional Analysis (ed. E. H. Zarantonello), Academic Press, New York, (1971), 101–156. doi: 10.1016/B978-0-12-775850-3.50009-1.

[17]

H. Brézis, Intégrales convexes dans les espaces de Sobolev, Israel J. Math., 13 (1972), 9-23.  doi: 10.1007/BF02760227.

[18]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.

[19]

H. BrézisM. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math., 23 (1970), 123-144.  doi: 10.1002/cpa.3160230107.

[20]

J. Berryman and C. J. Holland, Asymptotic behavior of the nonlinear diffusion equation $n_t = $ $(n^{-1}n _ x)_x$, J. Math. Phys., 23 (1982), 983-987.  doi: 10.1063/1.525466.

[21]

D. Blanchard and G. A. Francfort, Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term, SIAM J. Math. Anal., 19 (1988), 1032-1056.  doi: 10.1137/0519070.

[22]

D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Differential Equations, 210 (2005), 383-428.  doi: 10.1016/j.jde.2004.06.012.

[23]

J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal., 147 (1999), 269-361.  doi: 10.1007/s002050050152.

[24]

J. Carrillo and P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, 156 (1999), 93-121.  doi: 10.1006/jdeq.1998.3597.

[25]

M.G. Crandall and T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.  doi: 10.2307/2373376.

[26]

P. Daskalopoulos and M. A. del Pino, On the Cauchy problem for $u_t = \Delta \log u$ in higher dimensions, Math. Ann., 313 (1999), 189-206.  doi: 10.1007/s002080050257.

[27]

J. I. Díaz, Qualitative study of nonlinear parabolic equations: An introduction, Extracta Math., 16 (2001), 303-341. 

[28]

G. Díaz and I. Díaz, Finite extinction time for a class of nonlinear parabolic equations, Comm. Partial Differential Equations, 4 (1979), 1213-1231.  doi: 10.1080/03605307908820126.

[29]

J. I. Díaz and J. F. Padial, Uniqueness and existence of solutions in the $BV _t(Q)$ space to a doubly nonlinear parabolic problem, Publ. Mat., 40 (1996), 527-560.  doi: 10.5565/PUBLMAT_40296_18.

[30]

E. DiBenedetto and A. Friedman, The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc., 282 (1984), 183-204.  doi: 10.1090/S0002-9947-1984-0728709-6.

[31]

E. DiBenedetto and R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), 731-751.  doi: 10.1137/0512062.

[32]

J. DroniouR. Eymard and K. S. Talbot, Convergence in $C([0, T];L^ 2(\Omega))$ of weak solutions to perturbed doubly degenerate parabolic equations, J. Differential Equations, 260 (2016), 7821-7860.  doi: 10.1016/j.jde.2016.02.004.

[33]

J. R. EstebanA. Rodríguez and J. L. Vázquez, A nonlinear heat equation with singular diffusivity, Comm. Partial Differential Equations, 13 (1988), 985-1039.  doi: 10.1080/03605308808820566.

[34]

S. FornaroE. Henriques and V. Vespri, Harnack type inequalities for the parabolic logarithmic $p$-Laplacian equation, Matematiche (Catania), 75 (2020), 277-311.  doi: 10.4418/2020.75.1.13.

[35]

O. Grange and F. Mignot, Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires, J. Functional Analysis, 11 (1972), 77-92.  doi: 10.1016/0022-1236(72)90080-8.

[36]

V. M. Hokkanen, An implicit nonlinear time dependent equation has a solution, J. Math. Anal. Appl., 161 (1991), 117-141.  doi: 10.1016/0022-247X(91)90364-6.

[37]

N. Igbida and J. M. Urbano, Uniqueness for nonlinear degenerate problems, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 287-307.  doi: 10.1007/s00030-003-1030-0.

[38]

N. Kenmochi and I. Pawƚow, A class of nonlinear elliptic-parabolic equations with time-dependent constraints, Nonlinear Anal., 10 (1986), 1181-1202.  doi: 10.1016/0362-546X(86)90058-1.

[39]

K. Kobayasi, The equivalence of weak solutions and entropy solutions of nonlinear degenerate second-order equations, J. Differential Equations, 189 (2003), 383-395.  doi: 10.1016/S0022-0396(02)00069-4.

[40]

S. N. Kružkov, Generalized solutions of the Cauchy problem in the large for non-linear equations of first order, Dokl. Akad. Nauk SSSR, 187 (1969), 29–32; (English transl. in Soviet Math. Dokl., 10 (1969)).

[41]

S. N. Kružkov, First order quasilinear equations in several independent variables, Mat. Sb., 81 (1970), 228–255; (English transl. in Math. USSR Sb., 10 (1970)).

[42] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968. 
[43]

J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[44]

A. Matas and J. Merker, On doubly nonlinear evolution equations with non-potential or dynamic relation between the state variables, J. Evol. Equ., 17 (2017), 869-881.  doi: 10.1007/s00028-016-0342-6.

[45]

H. Miyoshi and M. Tsutsumi, Convergence of hydrodynamical limits for generalized Carleman models, Funkcial. Ekvac., 59 (2016), 351-382.  doi: 10.1619/fesi.59.351.

[46]

Y. W. Qi, Existence and non-existence of a fast diffusion equation in $ \mathbb{R}^n $, J. Differential Equations, 136 (1997), 378-393.  doi: 10.1006/jdeq.1996.3246.

[47]

P. A. Raviart, Sur la résolution de certaines equations paraboliques non linéaires, J. Functional Analysis, 5 (1970), 299-328.  doi: 10.1016/0022-1236(70)90031-5.

[48] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970. 
[49]

A. RodríguezJ.L. Vázquez and J. R. Esteban, The maximal solution of the logarithmic fast diffusion equation in two space dimensions, Adv. Differential Equations, 2 (1997), 867-894. 

[50]

R. E. Showalter, Mathematical formulation of the Stefan problem, Internat. J. Engrg. Sci., 20 (1982), 909-912.  doi: 10.1016/0020-7225(82)90109-4.

[51]

R. E. Showalter and N. J. Walkington, A diffusion system for fluid in fractured media, Differential Integral Equations, 3 (1990), 219-236. 

[52]

U. Stefanelli, On a class of doubly nonlinear nonlocal evolution equations, Differential Integral Equations, 15 (2002), 897-922. 

[53]

M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl., 132 (1988), 187-212.  doi: 10.1016/0022-247X(88)90053-4.

[54]

J. L. Vázquez, Finite-time blow-down in the evolution of point masses by planar logarithmic diffusion, Discrete Contin. Dyn. Syst., 19 (2007), 1-35.  doi: 10.3934/dcds.2007.19.1.

[55]

J. L. VázquezJ. R. Esteban and A. Rodríguez, The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane, Adv. Differential Equations, 1 (1996), 21-50. 

[56]

L. F. Wu, A new result for the porous medium equation derived from the Ricci flow, Bull. Amer. Math. Soc. (N.S.), 28 (1993), 90-94.  doi: 10.1090/S0273-0979-1993-00336-7.

[57]

N. Yamazaki, Almost periodic stability for doubly nonlinear evolution equations generated by subdifferentials, Nonlinear Anal., 47 (2001), 1725-1736.  doi: 10.1016/S0362-546X(01)00305-4.

[58]

K. Yosida, Functional Analysis, 6th edition, Springer, Berlin, 1980.

[59]

W. P. Ziemer, Weakly Differentiable Functions, Sobolev Spaces and Functions of Bounded Variation, Springer, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

S. Aizicovici and V. M. Hokkanen, Doubly nonlinear equations with unbounded operators, Nonlinear Anal., 58 (2004), 591-607.  doi: 10.1016/j.na.2003.10.029.

[2]

G. Akagi and U. Stefanelli, Doubly nonlinear equations as convex minimization, SIAM J. Math. Anal., 46 (2014), 1922-1945.  doi: 10.1137/13091909X.

[3]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341.  doi: 10.1007/BF01176474.

[4] L. AmbrosioN. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford University Press, New York, 2000. 
[5]

K. Ammar, Renormalized entropy solutions for degenerate nonlinear evolution problems, Electron. J. Differential Equations, 147 (2009), 32 pp.

[6]

K. Ammar and P. Wittbold, Existence of renormalized solutions of degenerate elliptic-parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 477-496.  doi: 10.1017/S0308210500002493.

[7]

F. AndreuJ. M. MazonJ. Toledo and N. Igbida, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions, Interfaces Free Bound., 8 (2006), 447-479.  doi: 10.4171/IFB/151.

[8]

H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.

[9]

A. Bamberger, Étude d'une équation doublement non linéaire, J. Functional Analysis, 24 (1977), 148-155.  doi: 10.1016/0022-1236(77)90051-9.

[10]

V. Barbu, Existence for nonlinear Volterra equations in Hilbert spaces, SIAM J. Math. Anal., 10 (1979), 552-569.  doi: 10.1137/0510052.

[11]

V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer, New York, 2010. doi: 10.1007/978-1-4419-5542-5.

[12]

V. Barbu and A. Favini, Existence for an implicit nonlinear differential equation, Nonlinear Anal., 32 (1998), 33-40.  doi: 10.1016/S0362-546X(97)00450-1.

[13]

P. Bénilan, Equations d'évolution dans un Espace de Banach Quelconque et Applications, Thèse d'état, Orsay, 1972.

[14]

P. Bénilan and P. Wittbold, On mild and weak solutions of elliptic-parabolic problems, Adv. Differential Equations, 1 (1996), 1053-1073. 

[15]

F. Bernis, Existence results for doubly nonlinear higher order parabolic equations on unbounded domains, Math. Ann., 279 (1988), 373-394.  doi: 10.1007/BF01456275.

[16]

H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Nonlinear Functional Analysis (ed. E. H. Zarantonello), Academic Press, New York, (1971), 101–156. doi: 10.1016/B978-0-12-775850-3.50009-1.

[17]

H. Brézis, Intégrales convexes dans les espaces de Sobolev, Israel J. Math., 13 (1972), 9-23.  doi: 10.1007/BF02760227.

[18]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland, Amsterdam, 1973.

[19]

H. BrézisM. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math., 23 (1970), 123-144.  doi: 10.1002/cpa.3160230107.

[20]

J. Berryman and C. J. Holland, Asymptotic behavior of the nonlinear diffusion equation $n_t = $ $(n^{-1}n _ x)_x$, J. Math. Phys., 23 (1982), 983-987.  doi: 10.1063/1.525466.

[21]

D. Blanchard and G. A. Francfort, Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term, SIAM J. Math. Anal., 19 (1988), 1032-1056.  doi: 10.1137/0519070.

[22]

D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Differential Equations, 210 (2005), 383-428.  doi: 10.1016/j.jde.2004.06.012.

[23]

J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational Mech. Anal., 147 (1999), 269-361.  doi: 10.1007/s002050050152.

[24]

J. Carrillo and P. Wittbold, Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, 156 (1999), 93-121.  doi: 10.1006/jdeq.1998.3597.

[25]

M.G. Crandall and T. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math., 93 (1971), 265-298.  doi: 10.2307/2373376.

[26]

P. Daskalopoulos and M. A. del Pino, On the Cauchy problem for $u_t = \Delta \log u$ in higher dimensions, Math. Ann., 313 (1999), 189-206.  doi: 10.1007/s002080050257.

[27]

J. I. Díaz, Qualitative study of nonlinear parabolic equations: An introduction, Extracta Math., 16 (2001), 303-341. 

[28]

G. Díaz and I. Díaz, Finite extinction time for a class of nonlinear parabolic equations, Comm. Partial Differential Equations, 4 (1979), 1213-1231.  doi: 10.1080/03605307908820126.

[29]

J. I. Díaz and J. F. Padial, Uniqueness and existence of solutions in the $BV _t(Q)$ space to a doubly nonlinear parabolic problem, Publ. Mat., 40 (1996), 527-560.  doi: 10.5565/PUBLMAT_40296_18.

[30]

E. DiBenedetto and A. Friedman, The ill-posed Hele-Shaw model and the Stefan problem for supercooled water, Trans. Amer. Math. Soc., 282 (1984), 183-204.  doi: 10.1090/S0002-9947-1984-0728709-6.

[31]

E. DiBenedetto and R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), 731-751.  doi: 10.1137/0512062.

[32]

J. DroniouR. Eymard and K. S. Talbot, Convergence in $C([0, T];L^ 2(\Omega))$ of weak solutions to perturbed doubly degenerate parabolic equations, J. Differential Equations, 260 (2016), 7821-7860.  doi: 10.1016/j.jde.2016.02.004.

[33]

J. R. EstebanA. Rodríguez and J. L. Vázquez, A nonlinear heat equation with singular diffusivity, Comm. Partial Differential Equations, 13 (1988), 985-1039.  doi: 10.1080/03605308808820566.

[34]

S. FornaroE. Henriques and V. Vespri, Harnack type inequalities for the parabolic logarithmic $p$-Laplacian equation, Matematiche (Catania), 75 (2020), 277-311.  doi: 10.4418/2020.75.1.13.

[35]

O. Grange and F. Mignot, Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires, J. Functional Analysis, 11 (1972), 77-92.  doi: 10.1016/0022-1236(72)90080-8.

[36]

V. M. Hokkanen, An implicit nonlinear time dependent equation has a solution, J. Math. Anal. Appl., 161 (1991), 117-141.  doi: 10.1016/0022-247X(91)90364-6.

[37]

N. Igbida and J. M. Urbano, Uniqueness for nonlinear degenerate problems, NoDEA Nonlinear Differential Equations Appl., 10 (2003), 287-307.  doi: 10.1007/s00030-003-1030-0.

[38]

N. Kenmochi and I. Pawƚow, A class of nonlinear elliptic-parabolic equations with time-dependent constraints, Nonlinear Anal., 10 (1986), 1181-1202.  doi: 10.1016/0362-546X(86)90058-1.

[39]

K. Kobayasi, The equivalence of weak solutions and entropy solutions of nonlinear degenerate second-order equations, J. Differential Equations, 189 (2003), 383-395.  doi: 10.1016/S0022-0396(02)00069-4.

[40]

S. N. Kružkov, Generalized solutions of the Cauchy problem in the large for non-linear equations of first order, Dokl. Akad. Nauk SSSR, 187 (1969), 29–32; (English transl. in Soviet Math. Dokl., 10 (1969)).

[41]

S. N. Kružkov, First order quasilinear equations in several independent variables, Mat. Sb., 81 (1970), 228–255; (English transl. in Math. USSR Sb., 10 (1970)).

[42] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968. 
[43]

J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.

[44]

A. Matas and J. Merker, On doubly nonlinear evolution equations with non-potential or dynamic relation between the state variables, J. Evol. Equ., 17 (2017), 869-881.  doi: 10.1007/s00028-016-0342-6.

[45]

H. Miyoshi and M. Tsutsumi, Convergence of hydrodynamical limits for generalized Carleman models, Funkcial. Ekvac., 59 (2016), 351-382.  doi: 10.1619/fesi.59.351.

[46]

Y. W. Qi, Existence and non-existence of a fast diffusion equation in $ \mathbb{R}^n $, J. Differential Equations, 136 (1997), 378-393.  doi: 10.1006/jdeq.1996.3246.

[47]

P. A. Raviart, Sur la résolution de certaines equations paraboliques non linéaires, J. Functional Analysis, 5 (1970), 299-328.  doi: 10.1016/0022-1236(70)90031-5.

[48] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970. 
[49]

A. RodríguezJ.L. Vázquez and J. R. Esteban, The maximal solution of the logarithmic fast diffusion equation in two space dimensions, Adv. Differential Equations, 2 (1997), 867-894. 

[50]

R. E. Showalter, Mathematical formulation of the Stefan problem, Internat. J. Engrg. Sci., 20 (1982), 909-912.  doi: 10.1016/0020-7225(82)90109-4.

[51]

R. E. Showalter and N. J. Walkington, A diffusion system for fluid in fractured media, Differential Integral Equations, 3 (1990), 219-236. 

[52]

U. Stefanelli, On a class of doubly nonlinear nonlocal evolution equations, Differential Integral Equations, 15 (2002), 897-922. 

[53]

M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl., 132 (1988), 187-212.  doi: 10.1016/0022-247X(88)90053-4.

[54]

J. L. Vázquez, Finite-time blow-down in the evolution of point masses by planar logarithmic diffusion, Discrete Contin. Dyn. Syst., 19 (2007), 1-35.  doi: 10.3934/dcds.2007.19.1.

[55]

J. L. VázquezJ. R. Esteban and A. Rodríguez, The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane, Adv. Differential Equations, 1 (1996), 21-50. 

[56]

L. F. Wu, A new result for the porous medium equation derived from the Ricci flow, Bull. Amer. Math. Soc. (N.S.), 28 (1993), 90-94.  doi: 10.1090/S0273-0979-1993-00336-7.

[57]

N. Yamazaki, Almost periodic stability for doubly nonlinear evolution equations generated by subdifferentials, Nonlinear Anal., 47 (2001), 1725-1736.  doi: 10.1016/S0362-546X(01)00305-4.

[58]

K. Yosida, Functional Analysis, 6th edition, Springer, Berlin, 1980.

[59]

W. P. Ziemer, Weakly Differentiable Functions, Sobolev Spaces and Functions of Bounded Variation, Springer, New York, 1989. doi: 10.1007/978-1-4612-1015-3.

[1]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[2]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[3]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations and Control Theory, 2022, 11 (2) : 399-414. doi: 10.3934/eect.2021005

[4]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[5]

Louis Tebou. Well-posedness and stabilization of an Euler-Bernoulli equation with a localized nonlinear dissipation involving the $p$-Laplacian. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2315-2337. doi: 10.3934/dcds.2012.32.2315

[6]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[7]

Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005

[8]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[9]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[10]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[11]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[12]

Christopher Henderson, Stanley Snelson, Andrei Tarfulea. Local well-posedness of the Boltzmann equation with polynomially decaying initial data. Kinetic and Related Models, 2020, 13 (4) : 837-867. doi: 10.3934/krm.2020029

[13]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[14]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[15]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[16]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[17]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[18]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[19]

Lassaad Aloui, Slim Tayachi. Local well-posedness for the inhomogeneous nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5409-5437. doi: 10.3934/dcds.2021082

[20]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

2021 Impact Factor: 1.169

Metrics

  • PDF downloads (354)
  • HTML views (340)
  • Cited by (0)

Other articles
by authors

[Back to Top]