The present paper proposes, in a real separable Hilbert space, to analyze the existence of solutions for a class of perturbed second-order state-dependent maximal monotone operators with a finite delay. The dependence of the operators is -in some sense- absolutely continuous (or bounded continuous) variation in time, and Lipschitz continuous in state. The approach to solve our problem is based on a discretization scheme. The uniqueness result is applied to optimal control.
Citation: |
[1] |
M. S. Abdo, A. G. Ibrahim and S. K. Panchal, State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces, Acta Univ. Apulensis, 54 (2018), 139-159.
doi: 10.17114/j.aua.2018.54.10.![]() ![]() ![]() |
[2] |
S. Adly and H. Attouch, Finite Convergence of Proximal-Gradient Inertial Algorithms with Dry Friction Damping, preprint, 2019, hal-02388038.
doi: 10.1137/19M1307779.![]() ![]() ![]() |
[3] |
S. Adly, H. Attouch and A. Cabot, Finite time stabililization of nonlinear oscillators subject to dry friction, Nonsmooth Mechanics and Analysis, Advances in Mechanics and Mathematics, 12 (2006), 289–304.
doi: 10.1007/0-387-29195-4_24.![]() ![]() ![]() |
[4] |
S. Adly and B. K. Le, Unbounded second-order state-dependent Moreau's sweeping processes in Hilbert spaces, J. Optim. Theory Appl., 169 (2016), 407-423.
doi: 10.1007/s10957-016-0905-2.![]() ![]() ![]() |
[5] |
S. Adly and B. K. Le, Second-order state-dependent sweeping process with unbounded and nonconvex constraints, Pure and Applied Functional Analysis, 3 (2018), 271-285.
doi: 10.1007/s10957-018-1427-x.![]() ![]() ![]() |
[6] |
S. Adly and F. Nacry, An existence result for discontinuous second-order nonconvex state-dependent sweeping processes, Appl. Math. Optim., 79 (2019), 515-546.
doi: 10.1007/s00245-017-9446-9.![]() ![]() ![]() |
[7] |
H. Attouch, A. Cabot and M. O. Czarnecki, Asymptotic behavior of nonautonomous monotone and subgradient evolution equations, Trans. Amer. Math. Soc., 370 (2018), 755-790.
doi: 10.1090/tran/6965.![]() ![]() ![]() |
[8] |
H. Attouch, A. Cabot and P. Redont, The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations, Adv. Math. Sci. Appl., 12 (2002), 273-306.
![]() ![]() |
[9] |
D. Azzam-Laouir, F. Aliouane, C. Castaing and M. D. P. Monteiro Marques, Second order time and state dependent sweeping process in Hilbert space, J. Optim. Theory Appl., 182 (2019), 153-188.
doi: 10.1007/s10957-018-01455-x.![]() ![]() ![]() |
[10] |
D. Azzam-Laouir, W. Belhoula, C. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with absolutely continuous variation in time and applications, J. Fixed Point Theory Appl., 21 (2019).
doi: 10.1007/s11784-019-0666-2.![]() ![]() ![]() |
[11] |
D. Azzam-Laouir, W. Belhoula, C. Castaing and M. D. P. Monteiro Marques, Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators, Evol. Equ. Control Theory, 9 (2020), 219-254.
doi: 10.3934/eect.2020004.![]() ![]() ![]() |
[12] |
D. Azzam-Laouir, C. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with continuous bounded variation in time and applications, Set-Valued Var. Anal., 26 (2018), 693-728.
doi: 10.1007/s11228-017-0432-9.![]() ![]() ![]() |
[13] |
D. Azzam-Laouir and S. Lounis, Nonconvex perturbations of second order maximal monotone differential inclusions, Topol. Methods Nonlinear Anal., 35 (2010), 305-317.
![]() ![]() |
[14] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands, 1976.
![]() ![]() |
[15] |
M. Bounkhel, General existence results for second order non convex sweeping process with unbounded perturbations, Port. Math., 60 (2003), 269-304.
![]() ![]() |
[16] |
M. Bounkhel, Existence results for first and second order nonconvex sweeping processes with perturbations and with delay: Fixed point approach, Georgian Math. J., 13 (2006), 239-249.
doi: 10.1515/GMJ.2006.239.![]() ![]() ![]() |
[17] |
M. Bounkhel and R. Al-Yusof, First and second order convex sweeping processes in reflexive smooth Banach spaces, Set-Valued Var. Anal., 18 (2010), 151-182.
doi: 10.1007/s11228-010-0134-z.![]() ![]() ![]() |
[18] |
M. Bounkhel and D. Azzam, Existence results on the second-order nonconvex sweeping processes with perturbation, Set Valued Anal., 12 (2004), 291-318.
doi: 10.1023/B:SVAN.0000031356.03559.91.![]() ![]() ![]() |
[19] |
H. Brézis, Opérateurs Maximaux Monotones Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert, Lecture Notes in Math., North-Holland, 1973.
![]() |
[20] |
B. Brogliato and A. Tanwani, Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability, SIAM Rev., 62 (2020), 3-129.
doi: 10.1137/18M1234795.![]() ![]() ![]() |
[21] |
C. Castaing, Quelques problèmes d'évolution du second ordre, Sém. d'Ana. Convexe, Montpellier, vol. 18, 1988.
![]() ![]() |
[22] |
C. Castaing, T. X. Duc Ha and M. Valadier, Evolution equations governed by the sweeping process, Set Valued Anal., 1 (1993), 109-139.
doi: 10.1007/BF01027688.![]() ![]() ![]() |
[23] |
C. Castaing, A. Faik and A. Salvadori, Evolution equations governed by m-accretive and subdifferential operators with delay, Int. J. Appl. Math., 2 (2000), 1005-1026.
![]() ![]() |
[24] |
C. Castaing, C. Godet-Thobie and L. X. Truong, Fractional order of evolution inclusion coupled with a time and state dependent maximal monotone operator, Mathematics MDPI, (2020), 1–30.
![]() |
[25] |
C. Castaing and A. G. Ibrahim, Functional differential inclusion on closed sets in Banach spaces, Adv. Math. Econ., 2 (2000), 21-39.
doi: 10.1007/978-4-431-67909-7_2.![]() ![]() ![]() |
[26] |
C. Castaing, A. G. Ibrahim and M. Yarou, Existence problems in second order evolution inclusions: Discretization and variational approach, Taiwanese J. Math., 12 (2008), 1433-1475.
doi: 10.11650/twjm/1500405034.![]() ![]() ![]() |
[27] |
C. Castaing, A. G. Ibrahim and M. Yarou, Some contributions to nonconvex sweeping process, J. Nonlinear Convex Anal., 10 (2009), 1-20.
![]() ![]() |
[28] |
C. Castaing and M. D. P. Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Port. Math., 54 (1997), 485-507.
![]() ![]() |
[29] |
C. Castaing, M. D. P. Monteiro Marques and P. Raynaud de Fitte, Second-order evolution problems with time-dependent maximal monotone operator and applications, Adv. Math. Econ., 22 (2018), 25-77.
![]() ![]() |
[30] |
C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces With Applications in Control Theory and Probability Theory, Kluwer Academic Publishers, Dordrecht, 2004.
doi: 10.1007/1-4020-1964-5.![]() ![]() ![]() |
[31] |
C. Castaing, A. Salvadori and L. Thibault, Functional evolution equations governed by nonconvex sweeping process, J. Nonlinear Convex Anal., 2 (2001), 217-241.
![]() ![]() |
[32] |
C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math, Springer-Verlag Berlin Heidelberg, 1977.
![]() ![]() |
[33] |
T. X. Duc Ha and M. D. P. Monteiro Marques, Nonconvex second order differential inclusions with memory, Set-Valued Anal., 3 (1995), 71-86.
doi: 10.1007/BF01033642.![]() ![]() ![]() |
[34] |
A. G. Ibrahim and F. A. Aladsani, Second order evolution inclusions governed by sweeping process in Banach spaces, Le Matematiche, LXIV (2009), 17-39.
![]() ![]() |
[35] |
M. Kunze and M. D. P. Monteiro Marques, BV solutions to evolution problems with time-dependent domains, Set-Valued Anal., 5 (1997), 57-72.
doi: 10.1023/A:1008621327851.![]() ![]() ![]() |
[36] |
M. Kunze and M. D. P. Monteiro Marques, An introduction to Moreau's sweeping process, in Impacts in Mechanical Systems, vol. 551, Springer, Berlin, Heidelberg, 2000, 1–60.
doi: 10.1007/3-540-45501-9_1.![]() ![]() ![]() |
[37] |
B. K. Le, Well-posedeness and nonsmooth Lyapunov pairs for state-dependent maximal monotone differential inclusions, Optimization, 69 (2020), 1187-1217.
doi: 10.1080/02331934.2019.1686504.![]() ![]() ![]() |
[38] |
M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, Birkhauser Verlag, Basel, 1993.
doi: 10.1007/978-3-0348-7614-8.![]() ![]() ![]() |
[39] |
J. J. Moreau, Unilateral Contact and Dry Friction in FiniteFreedom Dynamics. Nonsmooth Mechanics, CISM Courses and Lectures, vol. 302, Springer, Vienna, New York, 1988.
![]() |
[40] |
J. Noel, Second-order general perturbed sweeping process differential inclusion, J. Fixed Point Theory Appl., 20 (2018), 1-21.
doi: 10.1007/s11784-018-0609-3.![]() ![]() ![]() |
[41] |
L. Paoli, An existence result for non-smooth vibro-impact problem, J. Differential Equations, 211 (2005), 247-281.
doi: 10.1016/j.jde.2004.11.008.![]() ![]() ![]() |
[42] |
M. Schatzman, Problèmes unilatéraux d'évolution du second ordre en temps, Thèse de Doctorat d'Etat es Sciences Mathématiques, Université Pierre et Marie Curie, Paris 6, 1979.
![]() |
[43] |
F. Selamnia, D. Azzam-Laouir and M. D. P. Monteiro Marques, Evolution problems involving state-dependent maximal monotone operators, Appl. Anal., (2020).
![]() |
[44] |
A. A. Vladimirov, Nonstationary dissipative evolution equations in Hilbert space, Nonlinear Anal., 17 (1991), 499-518.
doi: 10.1016/0362-546X(91)90061-5.![]() ![]() ![]() |
[45] |
I. I. Vrabie, Compactness Methods for Nonlinear Evolution Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 32, Longman Scientific and Technical, John Wiley and Sons, Inc., New York, 1987.
![]() ![]() |