\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a second-order functional evolution problem with time and state dependent maximal monotone operators

Abstract Full Text(HTML) Related Papers Cited by
  • The present paper proposes, in a real separable Hilbert space, to analyze the existence of solutions for a class of perturbed second-order state-dependent maximal monotone operators with a finite delay. The dependence of the operators is -in some sense- absolutely continuous (or bounded continuous) variation in time, and Lipschitz continuous in state. The approach to solve our problem is based on a discretization scheme. The uniqueness result is applied to optimal control.

    Mathematics Subject Classification: Primary: 34K09; Secondary: 49J52, 49J53.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] M. S. AbdoA. G. Ibrahim and S. K. Panchal, State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces, Acta Univ. Apulensis, 54 (2018), 139-159.  doi: 10.17114/j.aua.2018.54.10.
    [2] S. Adly and H. Attouch, Finite Convergence of Proximal-Gradient Inertial Algorithms with Dry Friction Damping, preprint, 2019, hal-02388038. doi: 10.1137/19M1307779.
    [3] S. Adly, H. Attouch and A. Cabot, Finite time stabililization of nonlinear oscillators subject to dry friction, Nonsmooth Mechanics and Analysis, Advances in Mechanics and Mathematics, 12 (2006), 289–304. doi: 10.1007/0-387-29195-4_24.
    [4] S. Adly and B. K. Le, Unbounded second-order state-dependent Moreau's sweeping processes in Hilbert spaces, J. Optim. Theory Appl., 169 (2016), 407-423.  doi: 10.1007/s10957-016-0905-2.
    [5] S. Adly and B. K. Le, Second-order state-dependent sweeping process with unbounded and nonconvex constraints, Pure and Applied Functional Analysis, 3 (2018), 271-285.  doi: 10.1007/s10957-018-1427-x.
    [6] S. Adly and F. Nacry, An existence result for discontinuous second-order nonconvex state-dependent sweeping processes, Appl. Math. Optim., 79 (2019), 515-546.  doi: 10.1007/s00245-017-9446-9.
    [7] H. AttouchA. Cabot and M. O. Czarnecki, Asymptotic behavior of nonautonomous monotone and subgradient evolution equations, Trans. Amer. Math. Soc., 370 (2018), 755-790.  doi: 10.1090/tran/6965.
    [8] H. AttouchA. Cabot and P. Redont, The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations, Adv. Math. Sci. Appl., 12 (2002), 273-306. 
    [9] D. Azzam-LaouirF. AliouaneC. Castaing and M. D. P. Monteiro Marques, Second order time and state dependent sweeping process in Hilbert space, J. Optim. Theory Appl., 182 (2019), 153-188.  doi: 10.1007/s10957-018-01455-x.
    [10] D. Azzam-Laouir, W. Belhoula, C. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with absolutely continuous variation in time and applications, J. Fixed Point Theory Appl., 21 (2019). doi: 10.1007/s11784-019-0666-2.
    [11] D. Azzam-LaouirW. BelhoulaC. Castaing and M. D. P. Monteiro Marques, Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators, Evol. Equ. Control Theory, 9 (2020), 219-254.  doi: 10.3934/eect.2020004.
    [12] D. Azzam-LaouirC. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with continuous bounded variation in time and applications, Set-Valued Var. Anal., 26 (2018), 693-728.  doi: 10.1007/s11228-017-0432-9.
    [13] D. Azzam-Laouir and S. Lounis, Nonconvex perturbations of second order maximal monotone differential inclusions, Topol. Methods Nonlinear Anal., 35 (2010), 305-317. 
    [14] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands, 1976.
    [15] M. Bounkhel, General existence results for second order non convex sweeping process with unbounded perturbations, Port. Math., 60 (2003), 269-304. 
    [16] M. Bounkhel, Existence results for first and second order nonconvex sweeping processes with perturbations and with delay: Fixed point approach, Georgian Math. J., 13 (2006), 239-249.  doi: 10.1515/GMJ.2006.239.
    [17] M. Bounkhel and R. Al-Yusof, First and second order convex sweeping processes in reflexive smooth Banach spaces, Set-Valued Var. Anal., 18 (2010), 151-182.  doi: 10.1007/s11228-010-0134-z.
    [18] M. Bounkhel and D. Azzam, Existence results on the second-order nonconvex sweeping processes with perturbation, Set Valued Anal., 12 (2004), 291-318.  doi: 10.1023/B:SVAN.0000031356.03559.91.
    [19] H. Brézis, Opérateurs Maximaux Monotones Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert, Lecture Notes in Math., North-Holland, 1973.
    [20] B. Brogliato and A. Tanwani, Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability, SIAM Rev., 62 (2020), 3-129.  doi: 10.1137/18M1234795.
    [21] C. Castaing, Quelques problèmes d'évolution du second ordre, Sém. d'Ana. Convexe, Montpellier, vol. 18, 1988.
    [22] C. CastaingT. X. Duc Ha and M. Valadier, Evolution equations governed by the sweeping process, Set Valued Anal., 1 (1993), 109-139.  doi: 10.1007/BF01027688.
    [23] C. CastaingA. Faik and A. Salvadori, Evolution equations governed by m-accretive and subdifferential operators with delay, Int. J. Appl. Math., 2 (2000), 1005-1026. 
    [24] C. Castaing, C. Godet-Thobie and L. X. Truong, Fractional order of evolution inclusion coupled with a time and state dependent maximal monotone operator, Mathematics MDPI, (2020), 1–30.
    [25] C. Castaing and A. G. Ibrahim, Functional differential inclusion on closed sets in Banach spaces, Adv. Math. Econ., 2 (2000), 21-39.  doi: 10.1007/978-4-431-67909-7_2.
    [26] C. CastaingA. G. Ibrahim and M. Yarou, Existence problems in second order evolution inclusions: Discretization and variational approach, Taiwanese J. Math., 12 (2008), 1433-1475.  doi: 10.11650/twjm/1500405034.
    [27] C. CastaingA. G. Ibrahim and M. Yarou, Some contributions to nonconvex sweeping process, J. Nonlinear Convex Anal., 10 (2009), 1-20. 
    [28] C. Castaing and M. D. P. Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Port. Math., 54 (1997), 485-507. 
    [29] C. CastaingM. D. P. Monteiro Marques and P. Raynaud de Fitte, Second-order evolution problems with time-dependent maximal monotone operator and applications, Adv. Math. Econ., 22 (2018), 25-77. 
    [30] C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces With Applications in Control Theory and Probability Theory, Kluwer Academic Publishers, Dordrecht, 2004. doi: 10.1007/1-4020-1964-5.
    [31] C. CastaingA. Salvadori and L. Thibault, Functional evolution equations governed by nonconvex sweeping process, J. Nonlinear Convex Anal., 2 (2001), 217-241. 
    [32] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math, Springer-Verlag Berlin Heidelberg, 1977.
    [33] T. X. Duc Ha and M. D. P. Monteiro Marques, Nonconvex second order differential inclusions with memory, Set-Valued Anal., 3 (1995), 71-86.  doi: 10.1007/BF01033642.
    [34] A. G. Ibrahim and F. A. Aladsani, Second order evolution inclusions governed by sweeping process in Banach spaces, Le Matematiche, LXIV (2009), 17-39. 
    [35] M. Kunze and M. D. P. Monteiro Marques, BV solutions to evolution problems with time-dependent domains, Set-Valued Anal., 5 (1997), 57-72.  doi: 10.1023/A:1008621327851.
    [36] M. Kunze and M. D. P. Monteiro Marques, An introduction to Moreau's sweeping process, in Impacts in Mechanical Systems, vol. 551, Springer, Berlin, Heidelberg, 2000, 1–60. doi: 10.1007/3-540-45501-9_1.
    [37] B. K. Le, Well-posedeness and nonsmooth Lyapunov pairs for state-dependent maximal monotone differential inclusions, Optimization, 69 (2020), 1187-1217.  doi: 10.1080/02331934.2019.1686504.
    [38] M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, Birkhauser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-7614-8.
    [39] J. J. Moreau, Unilateral Contact and Dry Friction in FiniteFreedom Dynamics. Nonsmooth Mechanics, CISM Courses and Lectures, vol. 302, Springer, Vienna, New York, 1988.
    [40] J. Noel, Second-order general perturbed sweeping process differential inclusion, J. Fixed Point Theory Appl., 20 (2018), 1-21.  doi: 10.1007/s11784-018-0609-3.
    [41] L. Paoli, An existence result for non-smooth vibro-impact problem, J. Differential Equations, 211 (2005), 247-281.  doi: 10.1016/j.jde.2004.11.008.
    [42] M. Schatzman, Problèmes unilatéraux d'évolution du second ordre en temps, Thèse de Doctorat d'Etat es Sciences Mathématiques, Université Pierre et Marie Curie, Paris 6, 1979.
    [43] F. Selamnia, D. Azzam-Laouir and M. D. P. Monteiro Marques, Evolution problems involving state-dependent maximal monotone operators, Appl. Anal., (2020).
    [44] A. A. Vladimirov, Nonstationary dissipative evolution equations in Hilbert space, Nonlinear Anal., 17 (1991), 499-518.  doi: 10.1016/0362-546X(91)90061-5.
    [45] I. I. Vrabie, Compactness Methods for Nonlinear Evolution Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 32, Longman Scientific and Technical, John Wiley and Sons, Inc., New York, 1987.
  • 加载中
SHARE

Article Metrics

HTML views(791) PDF downloads(552) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return