• Previous Article
    Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces
  • EECT Home
  • This Issue
  • Next Article
    Functional inequalities involving nonlocal operators on complete Riemannian manifolds and their applications to the fractional porous medium equation
doi: 10.3934/eect.2021034
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

On a second-order functional evolution problem with time and state dependent maximal monotone operators

LMPA Laboratory, Department of Mathematics, Mohammed Seddik Ben Yahia University, Jijel-Algeria

Received  December 2020 Revised  May 2021 Early access July 2021

The present paper proposes, in a real separable Hilbert space, to analyze the existence of solutions for a class of perturbed second-order state-dependent maximal monotone operators with a finite delay. The dependence of the operators is -in some sense- absolutely continuous (or bounded continuous) variation in time, and Lipschitz continuous in state. The approach to solve our problem is based on a discretization scheme. The uniqueness result is applied to optimal control.

Citation: Soumia Saïdi. On a second-order functional evolution problem with time and state dependent maximal monotone operators. Evolution Equations & Control Theory, doi: 10.3934/eect.2021034
References:
[1]

M. S. AbdoA. G. Ibrahim and S. K. Panchal, State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces, Acta Univ. Apulensis, 54 (2018), 139-159.  doi: 10.17114/j.aua.2018.54.10.  Google Scholar

[2]

S. Adly and H. Attouch, Finite Convergence of Proximal-Gradient Inertial Algorithms with Dry Friction Damping, preprint, 2019, hal-02388038. doi: 10.1137/19M1307779.  Google Scholar

[3]

S. Adly, H. Attouch and A. Cabot, Finite time stabililization of nonlinear oscillators subject to dry friction, Nonsmooth Mechanics and Analysis, Advances in Mechanics and Mathematics, 12 (2006), 289–304. doi: 10.1007/0-387-29195-4_24.  Google Scholar

[4]

S. Adly and B. K. Le, Unbounded second-order state-dependent Moreau's sweeping processes in Hilbert spaces, J. Optim. Theory Appl., 169 (2016), 407-423.  doi: 10.1007/s10957-016-0905-2.  Google Scholar

[5]

S. Adly and B. K. Le, Second-order state-dependent sweeping process with unbounded and nonconvex constraints, Pure and Applied Functional Analysis, 3 (2018), 271-285.  doi: 10.1007/s10957-018-1427-x.  Google Scholar

[6]

S. Adly and F. Nacry, An existence result for discontinuous second-order nonconvex state-dependent sweeping processes, Appl. Math. Optim., 79 (2019), 515-546.  doi: 10.1007/s00245-017-9446-9.  Google Scholar

[7]

H. AttouchA. Cabot and M. O. Czarnecki, Asymptotic behavior of nonautonomous monotone and subgradient evolution equations, Trans. Amer. Math. Soc., 370 (2018), 755-790.  doi: 10.1090/tran/6965.  Google Scholar

[8]

H. AttouchA. Cabot and P. Redont, The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations, Adv. Math. Sci. Appl., 12 (2002), 273-306.   Google Scholar

[9]

D. Azzam-LaouirF. AliouaneC. Castaing and M. D. P. Monteiro Marques, Second order time and state dependent sweeping process in Hilbert space, J. Optim. Theory Appl., 182 (2019), 153-188.  doi: 10.1007/s10957-018-01455-x.  Google Scholar

[10]

D. Azzam-Laouir, W. Belhoula, C. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with absolutely continuous variation in time and applications, J. Fixed Point Theory Appl., 21 (2019). doi: 10.1007/s11784-019-0666-2.  Google Scholar

[11]

D. Azzam-LaouirW. BelhoulaC. Castaing and M. D. P. Monteiro Marques, Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators, Evol. Equ. Control Theory, 9 (2020), 219-254.  doi: 10.3934/eect.2020004.  Google Scholar

[12]

D. Azzam-LaouirC. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with continuous bounded variation in time and applications, Set-Valued Var. Anal., 26 (2018), 693-728.  doi: 10.1007/s11228-017-0432-9.  Google Scholar

[13]

D. Azzam-Laouir and S. Lounis, Nonconvex perturbations of second order maximal monotone differential inclusions, Topol. Methods Nonlinear Anal., 35 (2010), 305-317.   Google Scholar

[14]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands, 1976.  Google Scholar

[15]

M. Bounkhel, General existence results for second order non convex sweeping process with unbounded perturbations, Port. Math., 60 (2003), 269-304.   Google Scholar

[16]

M. Bounkhel, Existence results for first and second order nonconvex sweeping processes with perturbations and with delay: Fixed point approach, Georgian Math. J., 13 (2006), 239-249.  doi: 10.1515/GMJ.2006.239.  Google Scholar

[17]

M. Bounkhel and R. Al-Yusof, First and second order convex sweeping processes in reflexive smooth Banach spaces, Set-Valued Var. Anal., 18 (2010), 151-182.  doi: 10.1007/s11228-010-0134-z.  Google Scholar

[18]

M. Bounkhel and D. Azzam, Existence results on the second-order nonconvex sweeping processes with perturbation, Set Valued Anal., 12 (2004), 291-318.  doi: 10.1023/B:SVAN.0000031356.03559.91.  Google Scholar

[19]

H. Brézis, Opérateurs Maximaux Monotones Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert, Lecture Notes in Math., North-Holland, 1973. Google Scholar

[20]

B. Brogliato and A. Tanwani, Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability, SIAM Rev., 62 (2020), 3-129.  doi: 10.1137/18M1234795.  Google Scholar

[21]

C. Castaing, Quelques problèmes d'évolution du second ordre, Sém. d'Ana. Convexe, Montpellier, vol. 18, 1988.  Google Scholar

[22]

C. CastaingT. X. Duc Ha and M. Valadier, Evolution equations governed by the sweeping process, Set Valued Anal., 1 (1993), 109-139.  doi: 10.1007/BF01027688.  Google Scholar

[23]

C. CastaingA. Faik and A. Salvadori, Evolution equations governed by m-accretive and subdifferential operators with delay, Int. J. Appl. Math., 2 (2000), 1005-1026.   Google Scholar

[24]

C. Castaing, C. Godet-Thobie and L. X. Truong, Fractional order of evolution inclusion coupled with a time and state dependent maximal monotone operator, Mathematics MDPI, (2020), 1–30. Google Scholar

[25]

C. Castaing and A. G. Ibrahim, Functional differential inclusion on closed sets in Banach spaces, Adv. Math. Econ., 2 (2000), 21-39.  doi: 10.1007/978-4-431-67909-7_2.  Google Scholar

[26]

C. CastaingA. G. Ibrahim and M. Yarou, Existence problems in second order evolution inclusions: Discretization and variational approach, Taiwanese J. Math., 12 (2008), 1433-1475.  doi: 10.11650/twjm/1500405034.  Google Scholar

[27]

C. CastaingA. G. Ibrahim and M. Yarou, Some contributions to nonconvex sweeping process, J. Nonlinear Convex Anal., 10 (2009), 1-20.   Google Scholar

[28]

C. Castaing and M. D. P. Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Port. Math., 54 (1997), 485-507.   Google Scholar

[29]

C. CastaingM. D. P. Monteiro Marques and P. Raynaud de Fitte, Second-order evolution problems with time-dependent maximal monotone operator and applications, Adv. Math. Econ., 22 (2018), 25-77.   Google Scholar

[30]

C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces With Applications in Control Theory and Probability Theory, Kluwer Academic Publishers, Dordrecht, 2004. doi: 10.1007/1-4020-1964-5.  Google Scholar

[31]

C. CastaingA. Salvadori and L. Thibault, Functional evolution equations governed by nonconvex sweeping process, J. Nonlinear Convex Anal., 2 (2001), 217-241.   Google Scholar

[32]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math, Springer-Verlag Berlin Heidelberg, 1977.  Google Scholar

[33]

T. X. Duc Ha and M. D. P. Monteiro Marques, Nonconvex second order differential inclusions with memory, Set-Valued Anal., 3 (1995), 71-86.  doi: 10.1007/BF01033642.  Google Scholar

[34]

A. G. Ibrahim and F. A. Aladsani, Second order evolution inclusions governed by sweeping process in Banach spaces, Le Matematiche, LXIV (2009), 17-39.   Google Scholar

[35]

M. Kunze and M. D. P. Monteiro Marques, BV solutions to evolution problems with time-dependent domains, Set-Valued Anal., 5 (1997), 57-72.  doi: 10.1023/A:1008621327851.  Google Scholar

[36]

M. Kunze and M. D. P. Monteiro Marques, An introduction to Moreau's sweeping process, in Impacts in Mechanical Systems, vol. 551, Springer, Berlin, Heidelberg, 2000, 1–60. doi: 10.1007/3-540-45501-9_1.  Google Scholar

[37]

B. K. Le, Well-posedeness and nonsmooth Lyapunov pairs for state-dependent maximal monotone differential inclusions, Optimization, 69 (2020), 1187-1217.  doi: 10.1080/02331934.2019.1686504.  Google Scholar

[38]

M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, Birkhauser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-7614-8.  Google Scholar

[39]

J. J. Moreau, Unilateral Contact and Dry Friction in FiniteFreedom Dynamics. Nonsmooth Mechanics, CISM Courses and Lectures, vol. 302, Springer, Vienna, New York, 1988. Google Scholar

[40]

J. Noel, Second-order general perturbed sweeping process differential inclusion, J. Fixed Point Theory Appl., 20 (2018), 1-21.  doi: 10.1007/s11784-018-0609-3.  Google Scholar

[41]

L. Paoli, An existence result for non-smooth vibro-impact problem, J. Differential Equations, 211 (2005), 247-281.  doi: 10.1016/j.jde.2004.11.008.  Google Scholar

[42]

M. Schatzman, Problèmes unilatéraux d'évolution du second ordre en temps, Thèse de Doctorat d'Etat es Sciences Mathématiques, Université Pierre et Marie Curie, Paris 6, 1979. Google Scholar

[43]

F. Selamnia, D. Azzam-Laouir and M. D. P. Monteiro Marques, Evolution problems involving state-dependent maximal monotone operators, Appl. Anal., (2020). Google Scholar

[44]

A. A. Vladimirov, Nonstationary dissipative evolution equations in Hilbert space, Nonlinear Anal., 17 (1991), 499-518.  doi: 10.1016/0362-546X(91)90061-5.  Google Scholar

[45]

I. I. Vrabie, Compactness Methods for Nonlinear Evolution Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 32, Longman Scientific and Technical, John Wiley and Sons, Inc., New York, 1987.  Google Scholar

show all references

References:
[1]

M. S. AbdoA. G. Ibrahim and S. K. Panchal, State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces, Acta Univ. Apulensis, 54 (2018), 139-159.  doi: 10.17114/j.aua.2018.54.10.  Google Scholar

[2]

S. Adly and H. Attouch, Finite Convergence of Proximal-Gradient Inertial Algorithms with Dry Friction Damping, preprint, 2019, hal-02388038. doi: 10.1137/19M1307779.  Google Scholar

[3]

S. Adly, H. Attouch and A. Cabot, Finite time stabililization of nonlinear oscillators subject to dry friction, Nonsmooth Mechanics and Analysis, Advances in Mechanics and Mathematics, 12 (2006), 289–304. doi: 10.1007/0-387-29195-4_24.  Google Scholar

[4]

S. Adly and B. K. Le, Unbounded second-order state-dependent Moreau's sweeping processes in Hilbert spaces, J. Optim. Theory Appl., 169 (2016), 407-423.  doi: 10.1007/s10957-016-0905-2.  Google Scholar

[5]

S. Adly and B. K. Le, Second-order state-dependent sweeping process with unbounded and nonconvex constraints, Pure and Applied Functional Analysis, 3 (2018), 271-285.  doi: 10.1007/s10957-018-1427-x.  Google Scholar

[6]

S. Adly and F. Nacry, An existence result for discontinuous second-order nonconvex state-dependent sweeping processes, Appl. Math. Optim., 79 (2019), 515-546.  doi: 10.1007/s00245-017-9446-9.  Google Scholar

[7]

H. AttouchA. Cabot and M. O. Czarnecki, Asymptotic behavior of nonautonomous monotone and subgradient evolution equations, Trans. Amer. Math. Soc., 370 (2018), 755-790.  doi: 10.1090/tran/6965.  Google Scholar

[8]

H. AttouchA. Cabot and P. Redont, The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations, Adv. Math. Sci. Appl., 12 (2002), 273-306.   Google Scholar

[9]

D. Azzam-LaouirF. AliouaneC. Castaing and M. D. P. Monteiro Marques, Second order time and state dependent sweeping process in Hilbert space, J. Optim. Theory Appl., 182 (2019), 153-188.  doi: 10.1007/s10957-018-01455-x.  Google Scholar

[10]

D. Azzam-Laouir, W. Belhoula, C. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with absolutely continuous variation in time and applications, J. Fixed Point Theory Appl., 21 (2019). doi: 10.1007/s11784-019-0666-2.  Google Scholar

[11]

D. Azzam-LaouirW. BelhoulaC. Castaing and M. D. P. Monteiro Marques, Multi-valued perturbation to evolution problems involving time dependent maximal monotone operators, Evol. Equ. Control Theory, 9 (2020), 219-254.  doi: 10.3934/eect.2020004.  Google Scholar

[12]

D. Azzam-LaouirC. Castaing and M. D. P. Monteiro Marques, Perturbed evolution problems with continuous bounded variation in time and applications, Set-Valued Var. Anal., 26 (2018), 693-728.  doi: 10.1007/s11228-017-0432-9.  Google Scholar

[13]

D. Azzam-Laouir and S. Lounis, Nonconvex perturbations of second order maximal monotone differential inclusions, Topol. Methods Nonlinear Anal., 35 (2010), 305-317.   Google Scholar

[14]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands, 1976.  Google Scholar

[15]

M. Bounkhel, General existence results for second order non convex sweeping process with unbounded perturbations, Port. Math., 60 (2003), 269-304.   Google Scholar

[16]

M. Bounkhel, Existence results for first and second order nonconvex sweeping processes with perturbations and with delay: Fixed point approach, Georgian Math. J., 13 (2006), 239-249.  doi: 10.1515/GMJ.2006.239.  Google Scholar

[17]

M. Bounkhel and R. Al-Yusof, First and second order convex sweeping processes in reflexive smooth Banach spaces, Set-Valued Var. Anal., 18 (2010), 151-182.  doi: 10.1007/s11228-010-0134-z.  Google Scholar

[18]

M. Bounkhel and D. Azzam, Existence results on the second-order nonconvex sweeping processes with perturbation, Set Valued Anal., 12 (2004), 291-318.  doi: 10.1023/B:SVAN.0000031356.03559.91.  Google Scholar

[19]

H. Brézis, Opérateurs Maximaux Monotones Et Semi-Groupes De Contractions Dans Les Espaces De Hilbert, Lecture Notes in Math., North-Holland, 1973. Google Scholar

[20]

B. Brogliato and A. Tanwani, Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability, SIAM Rev., 62 (2020), 3-129.  doi: 10.1137/18M1234795.  Google Scholar

[21]

C. Castaing, Quelques problèmes d'évolution du second ordre, Sém. d'Ana. Convexe, Montpellier, vol. 18, 1988.  Google Scholar

[22]

C. CastaingT. X. Duc Ha and M. Valadier, Evolution equations governed by the sweeping process, Set Valued Anal., 1 (1993), 109-139.  doi: 10.1007/BF01027688.  Google Scholar

[23]

C. CastaingA. Faik and A. Salvadori, Evolution equations governed by m-accretive and subdifferential operators with delay, Int. J. Appl. Math., 2 (2000), 1005-1026.   Google Scholar

[24]

C. Castaing, C. Godet-Thobie and L. X. Truong, Fractional order of evolution inclusion coupled with a time and state dependent maximal monotone operator, Mathematics MDPI, (2020), 1–30. Google Scholar

[25]

C. Castaing and A. G. Ibrahim, Functional differential inclusion on closed sets in Banach spaces, Adv. Math. Econ., 2 (2000), 21-39.  doi: 10.1007/978-4-431-67909-7_2.  Google Scholar

[26]

C. CastaingA. G. Ibrahim and M. Yarou, Existence problems in second order evolution inclusions: Discretization and variational approach, Taiwanese J. Math., 12 (2008), 1433-1475.  doi: 10.11650/twjm/1500405034.  Google Scholar

[27]

C. CastaingA. G. Ibrahim and M. Yarou, Some contributions to nonconvex sweeping process, J. Nonlinear Convex Anal., 10 (2009), 1-20.   Google Scholar

[28]

C. Castaing and M. D. P. Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Port. Math., 54 (1997), 485-507.   Google Scholar

[29]

C. CastaingM. D. P. Monteiro Marques and P. Raynaud de Fitte, Second-order evolution problems with time-dependent maximal monotone operator and applications, Adv. Math. Econ., 22 (2018), 25-77.   Google Scholar

[30]

C. Castaing, P. Raynaud de Fitte and M. Valadier, Young Measures on Topological Spaces With Applications in Control Theory and Probability Theory, Kluwer Academic Publishers, Dordrecht, 2004. doi: 10.1007/1-4020-1964-5.  Google Scholar

[31]

C. CastaingA. Salvadori and L. Thibault, Functional evolution equations governed by nonconvex sweeping process, J. Nonlinear Convex Anal., 2 (2001), 217-241.   Google Scholar

[32]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math, Springer-Verlag Berlin Heidelberg, 1977.  Google Scholar

[33]

T. X. Duc Ha and M. D. P. Monteiro Marques, Nonconvex second order differential inclusions with memory, Set-Valued Anal., 3 (1995), 71-86.  doi: 10.1007/BF01033642.  Google Scholar

[34]

A. G. Ibrahim and F. A. Aladsani, Second order evolution inclusions governed by sweeping process in Banach spaces, Le Matematiche, LXIV (2009), 17-39.   Google Scholar

[35]

M. Kunze and M. D. P. Monteiro Marques, BV solutions to evolution problems with time-dependent domains, Set-Valued Anal., 5 (1997), 57-72.  doi: 10.1023/A:1008621327851.  Google Scholar

[36]

M. Kunze and M. D. P. Monteiro Marques, An introduction to Moreau's sweeping process, in Impacts in Mechanical Systems, vol. 551, Springer, Berlin, Heidelberg, 2000, 1–60. doi: 10.1007/3-540-45501-9_1.  Google Scholar

[37]

B. K. Le, Well-posedeness and nonsmooth Lyapunov pairs for state-dependent maximal monotone differential inclusions, Optimization, 69 (2020), 1187-1217.  doi: 10.1080/02331934.2019.1686504.  Google Scholar

[38]

M. D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, Birkhauser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-7614-8.  Google Scholar

[39]

J. J. Moreau, Unilateral Contact and Dry Friction in FiniteFreedom Dynamics. Nonsmooth Mechanics, CISM Courses and Lectures, vol. 302, Springer, Vienna, New York, 1988. Google Scholar

[40]

J. Noel, Second-order general perturbed sweeping process differential inclusion, J. Fixed Point Theory Appl., 20 (2018), 1-21.  doi: 10.1007/s11784-018-0609-3.  Google Scholar

[41]

L. Paoli, An existence result for non-smooth vibro-impact problem, J. Differential Equations, 211 (2005), 247-281.  doi: 10.1016/j.jde.2004.11.008.  Google Scholar

[42]

M. Schatzman, Problèmes unilatéraux d'évolution du second ordre en temps, Thèse de Doctorat d'Etat es Sciences Mathématiques, Université Pierre et Marie Curie, Paris 6, 1979. Google Scholar

[43]

F. Selamnia, D. Azzam-Laouir and M. D. P. Monteiro Marques, Evolution problems involving state-dependent maximal monotone operators, Appl. Anal., (2020). Google Scholar

[44]

A. A. Vladimirov, Nonstationary dissipative evolution equations in Hilbert space, Nonlinear Anal., 17 (1991), 499-518.  doi: 10.1016/0362-546X(91)90061-5.  Google Scholar

[45]

I. I. Vrabie, Compactness Methods for Nonlinear Evolution Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 32, Longman Scientific and Technical, John Wiley and Sons, Inc., New York, 1987.  Google Scholar

[1]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

[2]

Xuan Wu, Huafeng Xiao. Periodic solutions for a class of second-order differential delay equations. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4253-4269. doi: 10.3934/cpaa.2021159

[3]

Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339

[4]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[5]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[6]

Yuan Guo, Xiaofei Gao, Desheng Li. Structure of the set of bounded solutions for a class of nonautonomous second order differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1607-1616. doi: 10.3934/cpaa.2010.9.1607

[7]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[8]

Gábor Kiss, Bernd Krauskopf. Stability implications of delay distribution for first-order and second-order systems. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 327-345. doi: 10.3934/dcdsb.2010.13.327

[9]

Lassi Roininen, Petteri Piiroinen, Markku Lehtinen. Constructing continuous stationary covariances as limits of the second-order stochastic difference equations. Inverse Problems & Imaging, 2013, 7 (2) : 611-647. doi: 10.3934/ipi.2013.7.611

[10]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[11]

Zhiming Guo, Xiaomin Zhang. Multiplicity results for periodic solutions to a class of second order delay differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1529-1542. doi: 10.3934/cpaa.2010.9.1529

[12]

Lijun Yi, Zhongqing Wang. Legendre spectral collocation method for second-order nonlinear ordinary/partial differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 299-322. doi: 10.3934/dcdsb.2014.19.299

[13]

Osama Moaaz, Omar Bazighifan. Oscillation criteria for second-order quasi-linear neutral functional differential equation. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2465-2473. doi: 10.3934/dcdss.2020136

[14]

Maria Do Rosario Grossinho, Rogério Martins. Subharmonic oscillations for some second-order differential equations without Landesman-Lazer conditions. Conference Publications, 2001, 2001 (Special) : 174-181. doi: 10.3934/proc.2001.2001.174

[15]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[16]

Qiong Meng, X. H. Tang. Multiple solutions of second-order ordinary differential equation via Morse theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 945-958. doi: 10.3934/cpaa.2012.11.945

[17]

Kyeong-Hun Kim, Kijung Lee. A weighted $L_p$-theory for second-order parabolic and elliptic partial differential systems on a half space. Communications on Pure & Applied Analysis, 2016, 15 (3) : 761-794. doi: 10.3934/cpaa.2016.15.761

[18]

Willy Sarlet, Tom Mestdag. Compatibility aspects of the method of phase synchronization for decoupling linear second-order differential equations. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021019

[19]

Doria Affane, Mustapha Fateh Yarou. Well-posed control problems related to second-order differential inclusions. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021042

[20]

Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2271-2292. doi: 10.3934/dcdsb.2019227

2020 Impact Factor: 1.081

Article outline

[Back to Top]