[1]
|
G. P. Agrawal, Nonlinear Fiber Optics, 3$^{rd}$ edition, Academic Press, San Diego, 2001.
doi: 10.1007/3-540-46629-0_9.
|
[2]
|
A. Batal and T. Özsarı, Output feedback stabilization of the linearized Korteweg-de Vries equation with right endpoint controllers, Automatica, 109 (2019), 108531.
doi: 10.1016/j.automatica.2019.108531.
|
[3]
|
A. Batal, T. Özsarı and K. C. Yılmaz, Stabilization of higher order schrödinger equations on a finite interval: Part I, Evolution Equations & Control Theory, available online.
doi: 10.3934/eect.2020095.
|
[4]
|
E. Bisognin, V. Bisognin and O. P. Vera Villagrán, Stabilization of solutions to higher-order nonlinear Schrödinger equation with localized damping, Electron. J. Differential Equations, (2007), 18 pp.
|
[5]
|
J. L. Bona, S. M. Sun and B. -Y. Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations, 28 (2003), 1391-1436.
doi: 10.1081/PDE-120024373.
|
[6]
|
X. Carvajal and F. Linares, A higher-order nonlinear Schrödinger equation with variable coefficients, Differential Integral Equations, 16 (2003), 1111-1130.
|
[7]
|
X. Carvajal, Local well-posedness for a higher order nonlinear Schrödinger equation in Sobolev spaces of negative indices, Electron. J. Differential Equations, (2004), 10 pp.
|
[8]
|
X. Carvajal, Sharp global well-posedness for a higher order Schrödinger equation, J. Fourier Anal. Appl., 12 (2006), 53-70.
doi: 10.1007/s00041-005-5028-3.
|
[9]
|
M. M. Cavalcanti, W. J. Correa, M. A. Sepulveda and R. V. Asem, Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping, Stud. Univ. Babes-Bolyai Math., 64 (2019), 161-172.
doi: 10.24193/subbmath.2019.2.03.
|
[10]
|
J. C. Ceballos V., R. Pavez F. and O. P. Vera Villagrán, Exact boundary controllability for higher order nonlinear Schrödinger equations with constant coefficients, Electron. J. Differential Equations, (2005), No. 122, 31 pp.
|
[11]
|
E. Cerpa and J. -M. Coron, Rapid stabilization for a Korteweg-de Vries equation from the left Dirichlet boundary condition, IEEE Trans. Automat. Control, 58 (2013), 1688-1695.
doi: 10.1109/TAC.2013.2241479.
|
[12]
|
M. Chen, Stabilization of the higher order nonlinear Schrödinger equation with constant coefficients, Proc. Indian Acad. Sci. Math. Sci., 128 (2018), 15 pp.
doi: 10.1007/s12044-018-0410-7.
|
[13]
|
J.-M. Coron and Q. Lü, Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right, J. Math. Pures Appl. (9), 102 (2014), 1080-1120.
doi: 10.1016/j.matpur.2014.03.004.
|
[14]
|
P. N. da Silva and C. F. Vasconcellos, On the stabilization and controllability for a third order linear equation, Port. Math., 68 (2011), 279-296.
doi: 10.4171/PM/1892.
|
[15]
|
O. Glass and S. Guerrero, Controllability of the Korteweg-de Vries equation from the right Dirichlet boundary condition, Systems Control Lett., 59 (2010), 390-395.
doi: 10.1016/j.sysconle.2010.05.001.
|
[16]
|
C. E. Kenig and G. Staffilani, Local well-posedness for higher order nonlinear dispersive systems, J. Fourier Anal. Appl., 3 (1997), 417-433.
doi: 10.1007/BF02649104.
|
[17]
|
Y. Kodama, Optical solitons in a monomode fiber, J. Stat. Phys., 39 (1985), 597-614.
doi: 10.1007/BF01008354.
|
[18]
|
Y. Kodama and A. Hasegawa, Nonlinear pulse propagation in a monomode dielectric guide, IEEE Journal of Quantum Electronics, 23 (1987), 510-524.
doi: 10.1109/JQE.1987.1073392.
|
[19]
|
M. Krstic, B.-Z. Guo and A. Smyshlyaev, Boundary controllers and observers for Schrödinger equation, in 2007 46th IEEE Conference on Decision and Control, (2007), 4149–4154.
|
[20]
|
M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on Backstepping Designs, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.
doi: 10.1137/1.9780898718607.
|
[21]
|
C. Laurey, The Cauchy problem for a third order nonlinear Schrödinger equation, Nonlinear Anal., 29 (1997), 121-158.
doi: 10.1016/S0362-546X(96)00081-8.
|
[22]
|
W. Liu, Boundary feedback stabilization of an unstable heat equation, SIAM J. Control Optim., 42 (2003), 1033-1043.
doi: 10.1137/S0363012902402414.
|
[23]
|
S. Marx and E. Cerpa, Output feedback stabilization of the Korteweg–de Vries equation, Automatica J. IFAC, 87 (2018), 210-217.
doi: 10.1016/j.automatica.2017.07.057.
|
[24]
|
T. Özsarı and E. Arabacı, Boosting the decay of solutions of the linearised Korteweg–de Vries–Burgers equation to a predetermined rate from the boundary, Internat. J. Control, 92 (2019), 1753-1763.
doi: 10.1080/00207179.2017.1408923.
|
[25]
|
T. Özsarı and A. Batal, Pseudo-backstepping and its application to the control of Korteweg–de Vries equation from the right endpoint on a finite domain, SIAM J. Control Optim., 57 (2019), 1255-1283.
doi: 10.1137/18M1211933.
|
[26]
|
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol. 44, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1.
|
[27]
|
A. Smyshlyaev and M. Krstic, Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations, IEEE Trans. Automat. Control, 49 (2004), 2185-2202.
doi: 10.1109/TAC.2004.838495.
|
[28]
|
A. Smyshlyaev and M. Krstic, Backstepping observers for a class of parabolic PDEs, Systems Control Lett., 54 (2005), 613-625.
doi: 10.1016/j.sysconle.2004.11.001.
|
[29]
|
A. Smyshlyaev and M. Krstic, Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary, Systems Control Lett., 58 (2009), 617-623.
doi: 10.1016/j.sysconle.2009.04.005.
|
[30]
|
G. Staffilani, On the generalized Korteweg-de Vries-type equations, Differential Integral Equations, 10 (1997), 777-796.
|
[31]
|
H. Takaoka, Well-posedness for the higher order nonlinear Schrödinger equation, Adv. Math. Sci. Appl., 10 (2000), 149-171.
|
[32]
|
S. Tang and M. Krstic, Stabilization of linearized Korteweg-de Vries systems with anti-diffusion, in IEEE 2013 American Control Conference, Washington, DC, (2013), 3302–3307.
|
[33]
|
S. Tang and M. Krstic, Stabilization of linearized Korteweg-de Vries with anti-diffusion by boundary feedback with non-collocated observation, in IEEE 2015 American Control Conference, 2015.
doi: 10.1109/ACC.2015.7171020.
|
[34]
|
Z. Xu, L. Li, Z. Li and G. Zhou, Soliton interaction under the influence of higher-order effects, Optics Communications, 210 (2002), 375-384.
doi: 10.1016/S0030-4018(02)01803-5.
|