• Previous Article
    Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass
  • EECT Home
  • This Issue
  • Next Article
    Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations
doi: 10.3934/eect.2021043
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Local null controllability of a class of non-Newtonian incompressible viscous fluids

1. 

Departamento de Matemática, Universidade Estadual do Piauí, Teresina, PI, 64002-150, Brasil

2. 

Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, RJ, 24210-200, Brasil

3. 

Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, RJ, Niterói, RJ, 24210-200, Brasil

* Corresponding author: Juan Límaco (jlimaco@id.uff.br)

Received  October 2020 Revised  June 2021 Early access August 2021

Fund Project: Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

We investigate the null controllability property of systems that mathematically describe the dynamics of some non-Newtonian incompressible viscous flows. The principal model we study was proposed by O. A. Ladyzhenskaya, although the techniques we develop here apply to other fluids having a shear-dependent viscosity. Taking advantage of the Pontryagin Minimum Principle, we utilize a bootstrapping argument to prove that sufficiently smooth controls to the forced linearized Stokes problem exist, as long as the initial data in turn has enough regularity. From there, we extend the result to the nonlinear problem. As a byproduct, we devise a quasi-Newton algorithm to compute the states and a control, which we prove to converge in an appropriate sense. We finish the work with some numerical experiments.

Citation: Pitágoras Pinheiro de Carvalho, Juan Límaco, Denilson Menezes, Yuri Thamsten. Local null controllability of a class of non-Newtonian incompressible viscous fluids. Evolution Equations & Control Theory, doi: 10.3934/eect.2021043
References:
[1]

V. Alekseev, V. Tikhomirov and S. Fomin, Optimal Control, Contemporary Soviet Mathematics. Consultants Bureau, New York, 1987. doi: 10.1007/978-1-4615-7551-1.  Google Scholar

[2]

H. Beirão da Veiga, On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or non-slip boundary conditions, Comm. Pure Appl. Math., 58 (2005), 552-577.  doi: 10.1002/cpa.20036.  Google Scholar

[3]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[4]

P. Carreau, Rheological Equations of State from Molecular Network Theories, PhD thesis, PhD thesis, University of Wisconsin, Madison, 1968. Google Scholar

[5]

N. Carreno and S. Guerrero, Local null controllability of the n-dimensional Navier–Stokes system with n- 1 scalar controls in an arbitrary control domain, J. Math. Fluid Mech., 15 (2013), 139-153.  doi: 10.1007/s00021-012-0093-2.  Google Scholar

[6]

F. W. Chaves-Silva and S. Guerrero, A uniform controllability result for the keller–segel system, Asympto. Anal., 92 (2015), 313-338.  doi: 10.3233/ASY-141282.  Google Scholar

[7]

Y. Cho and K. Kensey, Effects of The Non-Newtonian Viscosity of Blood on Hemodynamics of Diiseased Arterial Flows, vol. 1, Prat, 1989. Google Scholar

[8]

Y. I. Cho and K. R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows, Biorheology, 28 (1991), 241-262.  doi: 10.3233/BIR-1991-283-415.  Google Scholar

[9]

E. Christiansen and S. Kelsey, Isothermal and nonisothermal, laminar, inelastic, non-newtonian tube-entrance flow following a contraction, Chemical Engineering Science, 28 (1973), 1099-1113.  doi: 10.1016/0009-2509(73)80013-2.  Google Scholar

[10]

G. R. CokeletE. MerrillE. GillilandH. ShinA. Britten and R. Wells Jr, The rheology of human blood measurement near and at zero shear rate, Transactions of the Society of Rheology, 7 (1963), 303-317.  doi: 10.1122/1.548959.  Google Scholar

[11]

J.-M. Coron and S. Guerrero, Null controllability of the n-dimensional Stokes system with n- 1 scalar controls, J. Differential Equations, 246 (2009), 2908-2921.  doi: 10.1016/j.jde.2008.10.019.  Google Scholar

[12]

J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier–Stokes system with a distributed control having two vanishing components, Inven. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.  Google Scholar

[13]

J.-M. CoronF. Marbach and F. Sueur, Small-time global exact controllability of the navier-stokes equation with Navier slip-with-friction boundary conditions, J. Eur. Math. Soc. (JEMS), 22 (2020), 1625-1673.  doi: 10.4171/JEMS/952.  Google Scholar

[14]

M. M. Cross, Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, Journal of Colloid Science, 20 (1965), 417-437.  doi: 10.1016/0095-8522(65)90022-X.  Google Scholar

[15]

P. Davies, A. Mazher, D. Giddens, C. Zarins and S. Glagov, Effects of nonnewtonian fluid behavior on wall shear in a separated flow region, Proc. 1st World Conf. of Biomech, 1 (1990), 301. Google Scholar

[16]

Q. Du and M. D. Gunzburger, Analysis of a Ladyzhenskaya model for incompressible viscous flow, J. Math. Ana. Appl., 155 (1991), 21-45.  doi: 10.1016/0022-247X(91)90024-T.  Google Scholar

[17]

A. el GibalyO. A. El-BassiounyO. DiaaA. I. ShehataT. Hassan and K. M. Saqr, Effects of non-newtonian viscosity on the hemodynamics of cerebral aneurysms, Applied Mechanics and Materials, 819 (2016), 366-370.  doi: 10.4028/www.scientific.net/AMM.819.366.  Google Scholar

[18]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[19]

E. Fernández-CaraS. GuerreroO. Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl., 83 (2004), 1501-1542.  doi: 10.1016/j.matpur.2004.02.010.  Google Scholar

[20]

E. Fernández-CaraS. GuerreroO. Y. Imanuvilov and J.-P. Puel, Some controllability results for the n-dimensional Navier–Stokes and Boussinesq systems with n-1 scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.  doi: 10.1137/04061965X.  Google Scholar

[21]

E. Fernández-CaraJ. Limaco and S. de Menezes, Theoretical and numerical local null controllability of a Ladyzhenskaya–Smagorinsky model of turbulence, J. Math. Fluid Mech., 17 (2015), 669-698.  doi: 10.1007/s00021-015-0232-7.  Google Scholar

[22]

E. Fernández-CaraA. Münch and D. A. Souza, On the numerical controllability of the two-dimensional heat, Stokes and Navier–Stokes equations, J. Sci. Comput., 70 (2017), 819-858.  doi: 10.1007/s10915-016-0266-x.  Google Scholar

[23]

E. Fernández-CaraD. Nina-HuamánM. R. Nuñez-Chávez and F. B. Vieira, On the theoretical and numerical control of a one-dimensional nonlinear parabolic partial differential equation, J. Optim. Theory Appl., 175 (2017), 652-682.  doi: 10.1007/s10957-017-1190-4.  Google Scholar

[24]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[25]

B. KjartansonD. ShieldsL. Domaschuk and C.-S. Man, The creep of ice measured with the pressuremeter, Canadian Geotechnical Journal, 25 (1988), 250-261.  doi: 10.1139/t88-029.  Google Scholar

[26]

O. Ladyzhenskaya, New equations for the description of the viscoue incompressible fluids and solvability in the large of the boundary value problems for them, Boundary Value Problem of Mathematical Physics V, Amer. Math. Soc.: Providence. Google Scholar

[27]

O. Ladyzhenskaya, Modification of the Navier–Stokes equations for large velocity gradients, Seminars in Mathematics VA Stheklov Mathematical Institute, 7 (1970). Google Scholar

[28]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[29]

W. Layton, Energy dissipation in the smagorinsky model of turbulence, Appl. Math. Lett., 59 (2016), 56-59.  doi: 10.1016/j.aml.2016.03.008.  Google Scholar

[30]

M. Lesieur, Turbulence in Fluids: Stochastic And Numerical Modelling, Mechanics of Fluids and Transport Processes, Martinus Nijhoff Publishers, Dordrecht, 1987. doi: 10.1007/978-94-009-3545-7.  Google Scholar

[31]

J.-L. Lions, Quelques Méthodes de Résolution des Problemes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris 1969.  Google Scholar

[32]

X. Liu and X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations, SIAM J. Control Opti., 50 (2012), 2046-2064.  doi: 10.1137/110851808.  Google Scholar

[33]

J. MálekJ. Nečas and M. Rŭžička, On the non-Newtonian incompressible fluids, Math. Models Methods Appl. Sci., 3 (1993), 35-63.  doi: 10.1142/S0218202593000047.  Google Scholar

[34]

J. MálekJ. Necas and M. Ruzicka, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $ p \geq 2$, Adv. Differential Equations, 6 (2001), 257-302.   Google Scholar

[35]

J. MálekK. R. Rajagopal and M. Rŭžička, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity, Math. Models Methods Appl. Sci., 5 (1995), 789-812.  doi: 10.1142/S0218202595000449.  Google Scholar

[36]

A. V. Malevsky and D. A. Yuen, Strongly chaotic non-newtonian mantle convection, Geophysical & Astrophysical Fluid Dynamics, 65 (1992), 149-171.  doi: 10.1080/03091929208225244.  Google Scholar

[37]

A. Metzner, Non-newtonian technology: Fluid mechanics, mixing, and heat transfer, Advances in Chemical Engineering, 1 (1956), 77-153.  doi: 10.1016/S0065-2377(08)60311-7.  Google Scholar

[38]

S. Micu and T. Takahashi, Local controllability to stationary trajectories of a Burgers equation with nonlocal viscosity, J. Differential Equations, 264 (2018), 3664-3703.  doi: 10.1016/j.jde.2017.11.029.  Google Scholar

[39]

M. Nakamura and T. Sawada, Numerical study on the flow of a non-newtonian fluid through an axisymmetric stenosis, J. Biomech. Eng., 110 (1988), 137-143.  doi: 10.1115/1.3108418.  Google Scholar

[40]

M. Pokornỳ, Cauchy problem for the non-newtonian viscous incompressible fluid, Appl. Math., 41 (1996), 169-201.   Google Scholar

[41]

R. E. Powell and H. Eyring, Mechanisms for the relaxation theory of viscosity, Nature, 154 (1944), 427-428.  doi: 10.1038/154427a0.  Google Scholar

[42]

L. Prandtl, Guide à Travers La mécanique des Fluides, Dunod, 1952. Google Scholar

[43]

T. C. Rebollo and R. Lewandowski, Mathematical and Numerical Foundations of Turbulence Models and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser/Springer, New York, 2014. doi: 10.1007/978-1-4939-0455-6.  Google Scholar

[44]

F. ReeT. Ree and H. Eyring, Relaxation theory of transport problems in condensed systems, Industrial & Engineering Chemistry, 50 (1958), 1036-1040.   Google Scholar

[45]

M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer Science & Business Media, 2000.  Google Scholar

[46]

J. Smagorinsky, General circulation experiments with the primitive equations: I. the basic experiment, Monthly Weather Review, 91 (1963), 99-164.  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.  Google Scholar

[47]

H. Steffan, W. Brandstätter, G. Bachler and R. Pucher, Comparison of newtonian and non-newtonian blood flow in stenotic vessels using numerical simulation, Biofluid Mechanics, Springer, (1990), 479–485. doi: 10.1007/978-3-642-52338-0_61.  Google Scholar

[48]

J. Sutterby, Laminar converging flow of dilute polymer solutions in conical sections: Part i. viscosity data, new viscosity model, tube flow solution, AIChE Journal, 12 (1966), 63-68.  doi: 10.1002/aic.690120114.  Google Scholar

[49]

J. L. Sutterby, Laminar converging flow of dilute polymer solutions in conical sections. II, Transactions of the Society of Rheology, 9 (1965), 227-241.  doi: 10.1122/1.549024.  Google Scholar

[50]

L. Tartar, An Introduction to Navier-Stokes Equation and Oceanography, Lecture Notes of the Unione Matematica Italiana, 1. Springer-Verlag, Berlin; UMI, Bologna, 2006. doi: 10.1007/3-540-36545-1.  Google Scholar

[51]

R. Temam and A. Chorin, Navier Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[52]

R. M. Turian, The critical stress in frictionally heated non-Newtonian plane Couette flow, Chemical Engineering Science, 24 (1969), 1581-1587.  doi: 10.1016/0009-2509(69)80097-7.  Google Scholar

[53]

C. Van Der Veen and I. Whillans, New and improved determinations of the velocity of ice stream-b and ice stream-c, West Antartica J. Glaciology, 36 (1990), 324-339.   Google Scholar

show all references

References:
[1]

V. Alekseev, V. Tikhomirov and S. Fomin, Optimal Control, Contemporary Soviet Mathematics. Consultants Bureau, New York, 1987. doi: 10.1007/978-1-4615-7551-1.  Google Scholar

[2]

H. Beirão da Veiga, On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or non-slip boundary conditions, Comm. Pure Appl. Math., 58 (2005), 552-577.  doi: 10.1002/cpa.20036.  Google Scholar

[3]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183. Springer, New York, 2013. doi: 10.1007/978-1-4614-5975-0.  Google Scholar

[4]

P. Carreau, Rheological Equations of State from Molecular Network Theories, PhD thesis, PhD thesis, University of Wisconsin, Madison, 1968. Google Scholar

[5]

N. Carreno and S. Guerrero, Local null controllability of the n-dimensional Navier–Stokes system with n- 1 scalar controls in an arbitrary control domain, J. Math. Fluid Mech., 15 (2013), 139-153.  doi: 10.1007/s00021-012-0093-2.  Google Scholar

[6]

F. W. Chaves-Silva and S. Guerrero, A uniform controllability result for the keller–segel system, Asympto. Anal., 92 (2015), 313-338.  doi: 10.3233/ASY-141282.  Google Scholar

[7]

Y. Cho and K. Kensey, Effects of The Non-Newtonian Viscosity of Blood on Hemodynamics of Diiseased Arterial Flows, vol. 1, Prat, 1989. Google Scholar

[8]

Y. I. Cho and K. R. Kensey, Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: Steady flows, Biorheology, 28 (1991), 241-262.  doi: 10.3233/BIR-1991-283-415.  Google Scholar

[9]

E. Christiansen and S. Kelsey, Isothermal and nonisothermal, laminar, inelastic, non-newtonian tube-entrance flow following a contraction, Chemical Engineering Science, 28 (1973), 1099-1113.  doi: 10.1016/0009-2509(73)80013-2.  Google Scholar

[10]

G. R. CokeletE. MerrillE. GillilandH. ShinA. Britten and R. Wells Jr, The rheology of human blood measurement near and at zero shear rate, Transactions of the Society of Rheology, 7 (1963), 303-317.  doi: 10.1122/1.548959.  Google Scholar

[11]

J.-M. Coron and S. Guerrero, Null controllability of the n-dimensional Stokes system with n- 1 scalar controls, J. Differential Equations, 246 (2009), 2908-2921.  doi: 10.1016/j.jde.2008.10.019.  Google Scholar

[12]

J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier–Stokes system with a distributed control having two vanishing components, Inven. Math., 198 (2014), 833-880.  doi: 10.1007/s00222-014-0512-5.  Google Scholar

[13]

J.-M. CoronF. Marbach and F. Sueur, Small-time global exact controllability of the navier-stokes equation with Navier slip-with-friction boundary conditions, J. Eur. Math. Soc. (JEMS), 22 (2020), 1625-1673.  doi: 10.4171/JEMS/952.  Google Scholar

[14]

M. M. Cross, Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems, Journal of Colloid Science, 20 (1965), 417-437.  doi: 10.1016/0095-8522(65)90022-X.  Google Scholar

[15]

P. Davies, A. Mazher, D. Giddens, C. Zarins and S. Glagov, Effects of nonnewtonian fluid behavior on wall shear in a separated flow region, Proc. 1st World Conf. of Biomech, 1 (1990), 301. Google Scholar

[16]

Q. Du and M. D. Gunzburger, Analysis of a Ladyzhenskaya model for incompressible viscous flow, J. Math. Ana. Appl., 155 (1991), 21-45.  doi: 10.1016/0022-247X(91)90024-T.  Google Scholar

[17]

A. el GibalyO. A. El-BassiounyO. DiaaA. I. ShehataT. Hassan and K. M. Saqr, Effects of non-newtonian viscosity on the hemodynamics of cerebral aneurysms, Applied Mechanics and Materials, 819 (2016), 366-370.  doi: 10.4028/www.scientific.net/AMM.819.366.  Google Scholar

[18]

L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.  Google Scholar

[19]

E. Fernández-CaraS. GuerreroO. Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier–Stokes system, J. Math. Pures Appl., 83 (2004), 1501-1542.  doi: 10.1016/j.matpur.2004.02.010.  Google Scholar

[20]

E. Fernández-CaraS. GuerreroO. Y. Imanuvilov and J.-P. Puel, Some controllability results for the n-dimensional Navier–Stokes and Boussinesq systems with n-1 scalar controls, SIAM J. Control Optim., 45 (2006), 146-173.  doi: 10.1137/04061965X.  Google Scholar

[21]

E. Fernández-CaraJ. Limaco and S. de Menezes, Theoretical and numerical local null controllability of a Ladyzhenskaya–Smagorinsky model of turbulence, J. Math. Fluid Mech., 17 (2015), 669-698.  doi: 10.1007/s00021-015-0232-7.  Google Scholar

[22]

E. Fernández-CaraA. Münch and D. A. Souza, On the numerical controllability of the two-dimensional heat, Stokes and Navier–Stokes equations, J. Sci. Comput., 70 (2017), 819-858.  doi: 10.1007/s10915-016-0266-x.  Google Scholar

[23]

E. Fernández-CaraD. Nina-HuamánM. R. Nuñez-Chávez and F. B. Vieira, On the theoretical and numerical control of a one-dimensional nonlinear parabolic partial differential equation, J. Optim. Theory Appl., 175 (2017), 652-682.  doi: 10.1007/s10957-017-1190-4.  Google Scholar

[24]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.  Google Scholar

[25]

B. KjartansonD. ShieldsL. Domaschuk and C.-S. Man, The creep of ice measured with the pressuremeter, Canadian Geotechnical Journal, 25 (1988), 250-261.  doi: 10.1139/t88-029.  Google Scholar

[26]

O. Ladyzhenskaya, New equations for the description of the viscoue incompressible fluids and solvability in the large of the boundary value problems for them, Boundary Value Problem of Mathematical Physics V, Amer. Math. Soc.: Providence. Google Scholar

[27]

O. Ladyzhenskaya, Modification of the Navier–Stokes equations for large velocity gradients, Seminars in Mathematics VA Stheklov Mathematical Institute, 7 (1970). Google Scholar

[28]

O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969.  Google Scholar

[29]

W. Layton, Energy dissipation in the smagorinsky model of turbulence, Appl. Math. Lett., 59 (2016), 56-59.  doi: 10.1016/j.aml.2016.03.008.  Google Scholar

[30]

M. Lesieur, Turbulence in Fluids: Stochastic And Numerical Modelling, Mechanics of Fluids and Transport Processes, Martinus Nijhoff Publishers, Dordrecht, 1987. doi: 10.1007/978-94-009-3545-7.  Google Scholar

[31]

J.-L. Lions, Quelques Méthodes de Résolution des Problemes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris 1969.  Google Scholar

[32]

X. Liu and X. Zhang, Local controllability of multidimensional quasi-linear parabolic equations, SIAM J. Control Opti., 50 (2012), 2046-2064.  doi: 10.1137/110851808.  Google Scholar

[33]

J. MálekJ. Nečas and M. Rŭžička, On the non-Newtonian incompressible fluids, Math. Models Methods Appl. Sci., 3 (1993), 35-63.  doi: 10.1142/S0218202593000047.  Google Scholar

[34]

J. MálekJ. Necas and M. Ruzicka, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: The case $ p \geq 2$, Adv. Differential Equations, 6 (2001), 257-302.   Google Scholar

[35]

J. MálekK. R. Rajagopal and M. Rŭžička, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity, Math. Models Methods Appl. Sci., 5 (1995), 789-812.  doi: 10.1142/S0218202595000449.  Google Scholar

[36]

A. V. Malevsky and D. A. Yuen, Strongly chaotic non-newtonian mantle convection, Geophysical & Astrophysical Fluid Dynamics, 65 (1992), 149-171.  doi: 10.1080/03091929208225244.  Google Scholar

[37]

A. Metzner, Non-newtonian technology: Fluid mechanics, mixing, and heat transfer, Advances in Chemical Engineering, 1 (1956), 77-153.  doi: 10.1016/S0065-2377(08)60311-7.  Google Scholar

[38]

S. Micu and T. Takahashi, Local controllability to stationary trajectories of a Burgers equation with nonlocal viscosity, J. Differential Equations, 264 (2018), 3664-3703.  doi: 10.1016/j.jde.2017.11.029.  Google Scholar

[39]

M. Nakamura and T. Sawada, Numerical study on the flow of a non-newtonian fluid through an axisymmetric stenosis, J. Biomech. Eng., 110 (1988), 137-143.  doi: 10.1115/1.3108418.  Google Scholar

[40]

M. Pokornỳ, Cauchy problem for the non-newtonian viscous incompressible fluid, Appl. Math., 41 (1996), 169-201.   Google Scholar

[41]

R. E. Powell and H. Eyring, Mechanisms for the relaxation theory of viscosity, Nature, 154 (1944), 427-428.  doi: 10.1038/154427a0.  Google Scholar

[42]

L. Prandtl, Guide à Travers La mécanique des Fluides, Dunod, 1952. Google Scholar

[43]

T. C. Rebollo and R. Lewandowski, Mathematical and Numerical Foundations of Turbulence Models and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser/Springer, New York, 2014. doi: 10.1007/978-1-4939-0455-6.  Google Scholar

[44]

F. ReeT. Ree and H. Eyring, Relaxation theory of transport problems in condensed systems, Industrial & Engineering Chemistry, 50 (1958), 1036-1040.   Google Scholar

[45]

M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer Science & Business Media, 2000.  Google Scholar

[46]

J. Smagorinsky, General circulation experiments with the primitive equations: I. the basic experiment, Monthly Weather Review, 91 (1963), 99-164.  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.  Google Scholar

[47]

H. Steffan, W. Brandstätter, G. Bachler and R. Pucher, Comparison of newtonian and non-newtonian blood flow in stenotic vessels using numerical simulation, Biofluid Mechanics, Springer, (1990), 479–485. doi: 10.1007/978-3-642-52338-0_61.  Google Scholar

[48]

J. Sutterby, Laminar converging flow of dilute polymer solutions in conical sections: Part i. viscosity data, new viscosity model, tube flow solution, AIChE Journal, 12 (1966), 63-68.  doi: 10.1002/aic.690120114.  Google Scholar

[49]

J. L. Sutterby, Laminar converging flow of dilute polymer solutions in conical sections. II, Transactions of the Society of Rheology, 9 (1965), 227-241.  doi: 10.1122/1.549024.  Google Scholar

[50]

L. Tartar, An Introduction to Navier-Stokes Equation and Oceanography, Lecture Notes of the Unione Matematica Italiana, 1. Springer-Verlag, Berlin; UMI, Bologna, 2006. doi: 10.1007/3-540-36545-1.  Google Scholar

[51]

R. Temam and A. Chorin, Navier Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.  Google Scholar

[52]

R. M. Turian, The critical stress in frictionally heated non-Newtonian plane Couette flow, Chemical Engineering Science, 24 (1969), 1581-1587.  doi: 10.1016/0009-2509(69)80097-7.  Google Scholar

[53]

C. Van Der Veen and I. Whillans, New and improved determinations of the velocity of ice stream-b and ice stream-c, West Antartica J. Glaciology, 36 (1990), 324-339.   Google Scholar

Figure 1.  Meshes. The volume is nine, there are $ 8748 $ tetrahedra, $ 1810 $ vertices, and $ 1944 $ boundary triangles
Figure 2.  Initial condition $ y_0 $
Figure 3.  Cross sections $ x_1 = 0.9 $ of the control components
Figure 4.  Cross sections $ x_1 = 2.1 $ of the control components
Figure 5.  Cross sections $ x_1 = 0.9 $ of the state components
Figure 6.  Cross sections $ x_1 = 2.1 $ of the state components
Figure 7.  Time evolution of the control (left panel) and state (right panel) norms. We referred to the sum of the norms of the components as "Modulus"
Figure 8.  The control components at time zero
Figure 9.  Heat maps of the control components at $ t = 0.15. $
Figure 10.  Heat maps of the first state component at diverse times
Figure 11.  Heat maps of the second state component at diverse times
Table 1.  Data we used in the simulations. Above, we denote by $ \psi_0 $ the initial streamline function, which we fix as $ \psi_0(x_1, x_2) = (x_1x_2)^2(1-x_1)^2(1-x_2)^2. $
$ N $ $ \Omega $ $ \omega $ $ T $ $ y_0 $ $ \nu_0 $ $ \nu_1 $ $ r $
$ 2 $ $ \left]0, 3\right[^2 $ $ \left]0.5, 2.5\right[^2 $ $ 1 $ $ \nabla \times \psi_0 $ $ 100 $ $ 0.01 $ $ 2 $
$ N $ $ \Omega $ $ \omega $ $ T $ $ y_0 $ $ \nu_0 $ $ \nu_1 $ $ r $
$ 2 $ $ \left]0, 3\right[^2 $ $ \left]0.5, 2.5\right[^2 $ $ 1 $ $ \nabla \times \psi_0 $ $ 100 $ $ 0.01 $ $ 2 $
[1]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[2]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037

[3]

Yukun Song, Yang Chen, Jun Yan, Shuai Chen. The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28 (1) : 47-66. doi: 10.3934/era.2020004

[4]

Xin Liu, Yongjin Lu, Xin-Guang Yang. Stability and dynamics for a nonlinear one-dimensional full compressible non-Newtonian fluids. Evolution Equations & Control Theory, 2021, 10 (2) : 365-384. doi: 10.3934/eect.2020071

[5]

Lars Diening, Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 255-268. doi: 10.3934/dcdss.2010.3.255

[6]

Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete & Continuous Dynamical Systems, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565

[7]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero, Michael Z. Zgurovsky. Strong attractors for vanishing viscosity approximations of non-Newtonian suspension flows. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1155-1176. doi: 10.3934/dcdsb.2018146

[8]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[9]

Bum Ja Jin, Kyungkeun Kang. Caccioppoli type inequality for non-Newtonian Stokes system and a local energy inequality of non-Newtonian Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4815-4834. doi: 10.3934/dcds.2017207

[10]

M. Bulíček, P. Kaplický. Incompressible fluids with shear rate and pressure dependent viscosity: Regularity of steady planar flows. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 41-50. doi: 10.3934/dcdss.2008.1.41

[11]

Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control & Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001

[12]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[13]

Mohamed Tij, Andrés Santos. Non-Newtonian Couette-Poiseuille flow of a dilute gas. Kinetic & Related Models, 2011, 4 (1) : 361-384. doi: 10.3934/krm.2011.4.361

[14]

Changli Yuan, Mojdeh Delshad, Mary F. Wheeler. Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks & Heterogeneous Media, 2010, 5 (3) : 583-602. doi: 10.3934/nhm.2010.5.583

[15]

Emil Novruzov. On existence and nonexistence of the positive solutions of non-newtonian filtration equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 719-730. doi: 10.3934/cpaa.2011.10.719

[16]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[17]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[18]

Farid Ammar Khodja, Cherif Bouzidi, Cédric Dupaix, Lahcen Maniar. Null controllability of retarded parabolic equations. Mathematical Control & Related Fields, 2014, 4 (1) : 1-15. doi: 10.3934/mcrf.2014.4.1

[19]

Herbert Koch. Partial differential equations with non-Euclidean geometries. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 481-504. doi: 10.3934/dcdss.2008.1.481

[20]

Enrique Zuazua. Controllability of partial differential equations and its semi-discrete approximations. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 469-513. doi: 10.3934/dcds.2002.8.469

2020 Impact Factor: 1.081

Article outline

Figures and Tables

[Back to Top]