\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Telegraph systems on networks and port-Hamiltonians. I. Boundary conditions and well-posedness

J. B. acknowledges partial support from the National Science Centre of Poland Grant 2017/25/B/ST1/00051 and the National Research Foundation of South Africa Grant 82770. The research was completed while A. B. was a doctoral candidate in the Interdisciplinary Doctoral School at Łódź University of Technology, Poland

Abstract Full Text(HTML) Figure(1) Related Papers Cited by
  • The paper is concerned with a system of linear hyperbolic differential equations on a network coupled through general transmission conditions of Kirchhoff's-type at the nodes. We discuss the reduction of such a problem to a system of 1-dimensional hyperbolic problems for the associated Riemann invariants and provide a semigroup-theoretic proof of its well-posedness. A number of examples showing the relation of our results with recent research is also provided.

    Mathematics Subject Classification: Primary: 35R02; Secondary: 47D03, 35L40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Starlike network of channels

  • [1] F. Ali Mehmeti, Regular solutions of transmission and interaction problems for wave equations, Math. Methods Appl. Sci., 11 (1989), 665-685.  doi: 10.1002/mma.1670110507.
    [2] F. Ali Mehmeti, Nonlinear Waves in Networks, Mathematical Research, 80. Akademie-Verlag, Berlin, 1994.
    [3] W. Arendt, Resolvent positive operators, Proc. London Math. Soc. (3), 54 (1987), 321-349.  doi: 10.1112/plms/s3-54.2.321.
    [4] J. Banasiak, Singularly perturbed linear and semilinear hyperbolic systems: Kinetic theory approach to some folk's theorems, Acta Appl. Math., 49 (1997), 199-228.  doi: 10.1023/A:1005882912151.
    [5] J. Banasiak and A. Błoch, Telegraph systems on networks and port-{H}amiltonians. II. {G}raph realizability, arXiv: 2103.06651, 2021.
    [6] J. BanasiakA. Falkiewicz and P. Namayanja, Semigroup approach to diffusion and transport problems on networks, Semigroup Forum, 93 (2016), 427-443.  doi: 10.1007/s00233-015-9730-4.
    [7] J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham, 2014. doi: 10.1007/978-3-319-05140-6.
    [8] J. Banasiak and P. Namayanja, Asymptotic behaviour of flows on reducible networks, Netw. Heterog. Media, 9 (2014), 197-216.  doi: 10.3934/nhm.2014.9.197.
    [9] G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Progress in Nonlinear Differential Equations and their Applications, 88. Subseries in Control. Birkhäuser/Springer, [Cham], 2016. doi: 10.1007/978-3-319-32062-5.
    [10] A. Bobrowski, From diffusions on graphs to Markov chains via asymptotic state lumping, Ann. Henri Poincaré, 13 (2012), 1501–1510. doi: 10.1007/s00023-012-0158-z.
    [11] R. Carlson, Linear network models related to blood flow, Quantum Graphs and Their Applications, Contemp. Math., Amer. Math. Soc., Providence, RI, 415 (2006), 65-80.  doi: 10.1090/conm/415/07860.
    [12] A. DiagneG. Bastin and J.-M. Coron, Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws, Automatica, 48 (2012), 109-114.  doi: 10.1016/j.automatica.2011.09.030.
    [13] B. DornM. Kramar FijavžR. Nagel and A. Radl, The semigroup approach to transport processes in networks, Phys. D, 239 (2010), 1416-1421.  doi: 10.1016/j.physd.2009.06.012.
    [14] K.-J. Engel, Generator property and stability for generalized difference operators, J. Evol. Equ., 13 (2013), 311-334.  doi: 10.1007/s00028-013-0179-1.
    [15] K.-J. Engel and M. Kramar Fijavž, Waves and diffusion on metric graphs with general vertex conditions, Evol. Equ. Control Theory, 8 (2019), 633-661.  doi: 10.3934/eect.2019030.
    [16] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, With Contributions By S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt, 2000.
    [17] P. Exner, Momentum operators on graphs, In Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th birthday, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 87 (2013), 105–118. doi: 10.1090/pspum/087/01427.
    [18] R. Fitzpatrick, Maxwells Equations and the Principles of Electromagnetism, Laxmi Publications, Ltd., 2010.
    [19] B. JacobK. Morris and H. Zwart, $C_0$-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain, J. Evol. Equ., 15 (2015), 493-502.  doi: 10.1007/s00028-014-0271-1.
    [20] B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, vol. 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012. doi: 10.1007/978-3-0348-0399-1.
    [21] T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.
    [22] B. Klöss, Difference operators as semigroup generators, Semigroup Forum, 81 (2010), 461-482.  doi: 10.1007/s00233-010-9232-3.
    [23] B. Klöss, The flow approach for waves in networks, Oper. Matrices, 6 (2012), 107-128.  doi: 10.7153/oam-06-08.
    [24] V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires, J. Phys. A, 32 (1999), 595-630.  doi: 10.1088/0305-4470/32/4/006.
    [25] M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162.  doi: 10.1007/s00209-004-0695-3.
    [26] M. Kramar Fijavž, D. Mugnolo and S. Nicaise, Linear hyperbolic systems on networks: Well-posedness and qualitative properties, ESAIM Control Optim. Calc. Var., 27 (2021), 46pp. doi: 10.1051/cocv/2020091.
    [27] P. Kuchment, Quantum graphs. I. Some basic structures, Special Section on Quantum Graphs. Waves Random Media, 14 (2004), S107–S128.
    [28] P. Kuchment, Quantum graphs: An introduction and a brief survey, In Analysis on Graphs and Its Applications, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 77 (2008), 291–312. doi: 10.1090/pspum/077/2459876.
    [29] X. Litrico and V. Fromion, Modeling and Control of Hydrosystems, Springer Science & Business Media, 2009. doi: 10.1007/978-1-84882-624-3.
    [30] G. Lumer, Espaces ramifiés, et diffusions sur les réseaux topologiques, C. R. Acad. Sci. Paris Sér. A-B, 291 (1980), A627–A630.
    [31] D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Understanding Complex Systems, Springer, Cham, 2014. doi: 10.1007/978-3-319-04621-1.
    [32] S. Nicaise, Control and stabilization of $2\times 2$ hyperbolic systems on graphs, Math. Control Relat. Fields, 7 (2017), 53-72.  doi: 10.3934/mcrf.2017004.
    [33] O. Staffans, Well-Posed Linear Systems, Encyclopedia of Mathematics and its Applications, 103. Cambridge University Press, Cambridge, 2005. doi: 10.1017/CBO9780511543197.
    [34] J. von Below, Classical solvability of linear parabolic equations on networks, J. Differential Equations, 72 (1988), 316-337.  doi: 10.1016/0022-0396(88)90158-1.
    [35] E. Zauderer, Partial Differential Equations of Applied Mathematics, 2$^{nd}$ edition, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, A Wiley-Interscience Publication, 1989.
    [36] H. ZwartY. Le GorrecB. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain, ESAIM Control Optim. Calc. Var., 16 (2010), 1077-1093.  doi: 10.1051/cocv/2009036.
  • 加载中

Figures(1)

SHARE

Article Metrics

HTML views(783) PDF downloads(449) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return