The paper is concerned with a system of linear hyperbolic differential equations on a network coupled through general transmission conditions of Kirchhoff's-type at the nodes. We discuss the reduction of such a problem to a system of 1-dimensional hyperbolic problems for the associated Riemann invariants and provide a semigroup-theoretic proof of its well-posedness. A number of examples showing the relation of our results with recent research is also provided.
Citation: |
[1] |
F. Ali Mehmeti, Regular solutions of transmission and interaction problems for wave equations, Math. Methods Appl. Sci., 11 (1989), 665-685.
doi: 10.1002/mma.1670110507.![]() ![]() ![]() |
[2] |
F. Ali Mehmeti, Nonlinear Waves in Networks, Mathematical Research, 80. Akademie-Verlag, Berlin, 1994.
![]() ![]() |
[3] |
W. Arendt, Resolvent positive operators, Proc. London Math. Soc. (3), 54 (1987), 321-349.
doi: 10.1112/plms/s3-54.2.321.![]() ![]() ![]() |
[4] |
J. Banasiak, Singularly perturbed linear and semilinear hyperbolic systems: Kinetic theory approach to some folk's theorems, Acta Appl. Math., 49 (1997), 199-228.
doi: 10.1023/A:1005882912151.![]() ![]() ![]() |
[5] |
J. Banasiak and A. Błoch, Telegraph systems on networks and port-{H}amiltonians. II. {G}raph realizability, arXiv: 2103.06651, 2021.
![]() |
[6] |
J. Banasiak, A. Falkiewicz and P. Namayanja, Semigroup approach to diffusion and transport problems on networks, Semigroup Forum, 93 (2016), 427-443.
doi: 10.1007/s00233-015-9730-4.![]() ![]() ![]() |
[7] |
J. Banasiak and M. Lachowicz, Methods of Small Parameter in Mathematical Biology, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham, 2014.
doi: 10.1007/978-3-319-05140-6.![]() ![]() |
[8] |
J. Banasiak and P. Namayanja, Asymptotic behaviour of flows on reducible networks, Netw. Heterog. Media, 9 (2014), 197-216.
doi: 10.3934/nhm.2014.9.197.![]() ![]() ![]() |
[9] |
G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of 1-D Hyperbolic Systems, Progress in Nonlinear Differential Equations and their Applications, 88. Subseries in Control. Birkhäuser/Springer, [Cham], 2016.
doi: 10.1007/978-3-319-32062-5.![]() ![]() ![]() |
[10] |
A. Bobrowski, From diffusions on graphs to Markov chains via asymptotic state lumping, Ann. Henri Poincaré, 13 (2012), 1501–1510.
doi: 10.1007/s00023-012-0158-z.![]() ![]() ![]() |
[11] |
R. Carlson, Linear network models related to blood flow, Quantum Graphs and Their Applications, Contemp. Math., Amer. Math. Soc., Providence, RI, 415 (2006), 65-80.
doi: 10.1090/conm/415/07860.![]() ![]() ![]() |
[12] |
A. Diagne, G. Bastin and J.-M. Coron, Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws, Automatica, 48 (2012), 109-114.
doi: 10.1016/j.automatica.2011.09.030.![]() ![]() ![]() |
[13] |
B. Dorn, M. Kramar Fijavž, R. Nagel and A. Radl, The semigroup approach to transport processes in networks, Phys. D, 239 (2010), 1416-1421.
doi: 10.1016/j.physd.2009.06.012.![]() ![]() ![]() |
[14] |
K.-J. Engel, Generator property and stability for generalized difference operators, J. Evol. Equ., 13 (2013), 311-334.
doi: 10.1007/s00028-013-0179-1.![]() ![]() ![]() |
[15] |
K.-J. Engel and M. Kramar Fijavž, Waves and diffusion on metric graphs with general vertex conditions, Evol. Equ. Control Theory, 8 (2019), 633-661.
doi: 10.3934/eect.2019030.![]() ![]() ![]() |
[16] |
K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, With Contributions By S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt, 2000.
![]() ![]() |
[17] |
P. Exner, Momentum operators on graphs, In Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th birthday, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 87 (2013), 105–118.
doi: 10.1090/pspum/087/01427.![]() ![]() ![]() |
[18] |
R. Fitzpatrick, Maxwells Equations and the Principles of Electromagnetism, Laxmi Publications, Ltd., 2010.
![]() |
[19] |
B. Jacob, K. Morris and H. Zwart, $C_0$-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain, J. Evol. Equ., 15 (2015), 493-502.
doi: 10.1007/s00028-014-0271-1.![]() ![]() ![]() |
[20] |
B. Jacob and H. J. Zwart, Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces, vol. 223 of Operator Theory: Advances and Applications, Birkhäuser/Springer Basel AG, Basel, 2012.
doi: 10.1007/978-3-0348-0399-1.![]() ![]() ![]() |
[21] |
T. Kato, Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.
![]() ![]() |
[22] |
B. Klöss, Difference operators as semigroup generators, Semigroup Forum, 81 (2010), 461-482.
doi: 10.1007/s00233-010-9232-3.![]() ![]() ![]() |
[23] |
B. Klöss, The flow approach for waves in networks, Oper. Matrices, 6 (2012), 107-128.
doi: 10.7153/oam-06-08.![]() ![]() ![]() |
[24] |
V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires, J. Phys. A, 32 (1999), 595-630.
doi: 10.1088/0305-4470/32/4/006.![]() ![]() ![]() |
[25] |
M. Kramar and E. Sikolya, Spectral properties and asymptotic periodicity of flows in networks, Math. Z., 249 (2005), 139-162.
doi: 10.1007/s00209-004-0695-3.![]() ![]() ![]() |
[26] |
M. Kramar Fijavž, D. Mugnolo and S. Nicaise, Linear hyperbolic systems on networks: Well-posedness and qualitative properties, ESAIM Control Optim. Calc. Var., 27 (2021), 46pp.
doi: 10.1051/cocv/2020091.![]() ![]() ![]() |
[27] |
P. Kuchment, Quantum graphs. I. Some basic structures, Special Section on Quantum Graphs. Waves Random Media, 14 (2004), S107–S128.
![]() ![]() |
[28] |
P. Kuchment, Quantum graphs: An introduction and a brief survey, In Analysis on Graphs and Its Applications, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 77 (2008), 291–312.
doi: 10.1090/pspum/077/2459876.![]() ![]() ![]() |
[29] |
X. Litrico and V. Fromion, Modeling and Control of Hydrosystems, Springer Science & Business Media, 2009.
doi: 10.1007/978-1-84882-624-3.![]() ![]() |
[30] |
G. Lumer, Espaces ramifiés, et diffusions sur les réseaux topologiques, C. R. Acad. Sci. Paris Sér. A-B, 291 (1980), A627–A630.
![]() ![]() |
[31] |
D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, Understanding Complex Systems, Springer, Cham, 2014.
doi: 10.1007/978-3-319-04621-1.![]() ![]() ![]() |
[32] |
S. Nicaise, Control and stabilization of $2\times 2$ hyperbolic systems on graphs, Math. Control Relat. Fields, 7 (2017), 53-72.
doi: 10.3934/mcrf.2017004.![]() ![]() ![]() |
[33] |
O. Staffans, Well-Posed Linear Systems, Encyclopedia of Mathematics and its Applications,
103. Cambridge University Press, Cambridge, 2005.
doi: 10.1017/CBO9780511543197.![]() ![]() ![]() |
[34] |
J. von Below, Classical solvability of linear parabolic equations on networks, J. Differential Equations, 72 (1988), 316-337.
doi: 10.1016/0022-0396(88)90158-1.![]() ![]() ![]() |
[35] |
E. Zauderer, Partial Differential Equations of Applied Mathematics, 2$^{nd}$ edition, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, A Wiley-Interscience Publication, 1989.
![]() ![]() |
[36] |
H. Zwart, Y. Le Gorrec, B. Maschke and J. Villegas, Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain, ESAIM Control Optim. Calc. Var., 16 (2010), 1077-1093.
doi: 10.1051/cocv/2009036.![]() ![]() ![]() |
Starlike network of channels