This paper deals with stability of solution map to a parametric control problem governed by semilinear elliptic equations with finite unilateral constraints, where the objective functional is not convex. By using the first-order necessary optimality conditions, we derive some sufficient conditions under which the solution map is upper semicontinuous with respect to parameters.
Citation: |
[1] |
W. Alt, R. Griesse, N. Metla and A. Rösch, Lipschitz stability for elliptic optimal control problems with mixed control-state contraints, Optimization, 59 (2010), 833-849.
doi: 10.1080/02331930902863749.![]() ![]() ![]() |
[2] |
J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, 1990.
![]() ![]() |
[3] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2010.
![]() ![]() |
[4] |
E. Casas and F. Tröltzsch, First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations, SIAM J. Control and Optim., 48 (2009), 688-718.
doi: 10.1137/080720048.![]() ![]() ![]() |
[5] |
B. Dacorogna, Direct Methods in Calculus of Variations, Springer-Verlag Berlin Heidelberg, 1989.
doi: 10.1007/978-3-642-51440-1.![]() ![]() ![]() |
[6] |
R. Griesse, Lipschitz stability of solutions to some state-constrained elliptic optimal control problems, Z. Anal. Anwend., 25 (2006), 435-455.
doi: 10.4171/ZAA/1300.![]() ![]() ![]() |
[7] |
B. T. Kien and V. H. Nhu, Second-order necessary optimality conditions for a class of semilinear elliptic optimal control problems with mixed pointwise constraints, SIAM J. Control Optim., 52 (2014), 1166-1202.
doi: 10.1137/130917570.![]() ![]() ![]() |
[8] |
B. T. Kien, V. H. Nhu and A. Rösch, Lower semicontinuous of the solution map to a parametric elliptic optimal control problem with mixed pointwise constraints, Optim., 64 (2015), 1219-1238.
doi: 10.1080/02331934.2013.853060.![]() ![]() ![]() |
[9] |
B. T. Kien, V. H. Nhu and N. H. Son, Second-order optimality conditions for a semilinear elliptic optimal control problem with mixed pointwise constraints, Set-Valued Var. Anal., 25 (2017), 177-210.
doi: 10.1007/s11228-016-0373-8.![]() ![]() ![]() |
[10] |
B. T. Kien, N. Q. Tuan, C.-F Wen and J.-C. Yao, $L^\infty $-Stability of a parametric optimal control problem governed by semilinear elliptic equations, Appl. Math. and Optim., 84 (2021), 849-876.
doi: 10.1007/s00245-020-09664-5.![]() ![]() ![]() |
[11] |
B. T. Kien and J.-C. Yao, Semicontinuity of the solution map to a parametric optimal control problem, Appl. Anal. and Optim., 2 (2018), 93-116.
![]() |
[12] |
K. Malanowski and F. Tröltzsch, Lipschitz stability of solutions to parametric optimal control for elliptic equations, Control Cybern., 29 (2000), 237-256.
![]() ![]() |
[13] |
V. H. Nhu, N. H. Anh and B. T. Kien, Hölder continuity of the solution map to an elliptic optimal control problem with mixed control-state constraints,, Taiwanese J. Math., 17 (2013), 1245-1266.
doi: 10.11650/tjm.17.2013.2617.![]() ![]() ![]() |
[14] |
N. H. Son, On the semicontinuity of the solution map to a parametric boundary control problem, Optim., 66 (2017), 311-329.
doi: 10.1080/02331934.2016.1274990.![]() ![]() ![]() |
[15] |
N. H. Son and T. A. Dao, Upper semicontinuity of the solution map to a parametric boundary optimal control problem with unbounded constraint sets, Submitted, http://arXiv.org/abs/2012.15196.
![]() |
[16] |
N. H. Son and N. B. Giang, Upper semicontinuity of the solution map to a parametric elliptic optimal control problem, Set-Valued Var. Anal., 29 (2021), 257-282.
doi: 10.1007/s11228-020-00546-0.![]() ![]() ![]() |