• Previous Article
    On the stabilization for the high-order Kadomtsev-Petviashvili and the Zakharov-Kuznetsov equations with localized damping
  • EECT Home
  • This Issue
  • Next Article
    $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations
doi: 10.3934/eect.2021048
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

The method of extremal shift in control problems for evolution variational inequalities under disturbances

Krasovskii Institute of Mathematics and Mechanics of UB RAS, Yekaterinburg 620990, Russia

Received  April 2021 Revised  June 2021 Early access August 2021

The problems of designing feedback control algorithms for parabolic and hyperbolic variational inequalities are considered. These algorithms should preserve given properties of solutions of inequalities under the action of unknown disturbances. Solving algorithms that are stable with respect to informational noises are constructed. The algorithms are based on the method of extremal shift well-known in the theory of guaranteed control.

Citation: Vyacheslav Maksimov. The method of extremal shift in control problems for evolution variational inequalities under disturbances. Evolution Equations & Control Theory, doi: 10.3934/eect.2021048
References:
[1]

D. R. Adams and S. Lenhart, Optimal control of the obstacle for a parabolic variational inequality, J. Math. Anal. Appl., 268 (2002), 602-614.  doi: 10.1006/jmaa.2001.7833.  Google Scholar

[2]

B. AllecheV. D. Rădulescu and M. Sebaoui, The Tikhonov regularization for equilibrium problems and applications to quasi-hemivariational inequalities, Optim. Lett., 9 (2015), 483-503.  doi: 10.1007/s11590-014-0765-3.  Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976.  Google Scholar

[4]

V. Barbu, Optimal Control of Variational Inequalities, Research Notes in Mathematics, 100, Pitman (Advanced Publishing Program), Boston, MA, 1984.  Google Scholar

[5]

M. Bergounioux and H. Zidani, Pontryagin maximum principle for optimal control of variational inequalities, SIAM J. Control Optim., 37 (1999), 1273-1290.  doi: 10.1137/S0363012997328087.  Google Scholar

[6]

M. Boukrouche and D. A. Tarzia, Convergence of optimal control problems governed by second kind parabolic variational inequalities, J. Control Theory Appl., 11 (2013), 422-427.  doi: 10.1007/s11768-013-2155-2.  Google Scholar

[7]

H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9), 51 (1972), 1-168.   Google Scholar

[8] H. O. Fattorini, Infinite-Dimensional Optimization and Control Theory, Encyclopedia of Mathematics and its Applications, 62, Cambridge University Press, Cambridge, 1999.  doi: 10.1017/CBO9780511574795.  Google Scholar
[9]

A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Translations of Mathematical Monographs, 187, American Mathematical Society, Providence, RI, 2000. doi: 10.1090/mmono/187.  Google Scholar

[10]

D. Goeleven and D. Motreanu, Variational and Hemivariational Inequalities: Theory, Methods and Applications. Vol. Ⅱ: Unilateral Problems, Nonconvex Optimization and its Applications, 70, Kluwer Academic Publishers, Boston, MA, 2003. doi: 10.1007/978-1-4419-8758-7.  Google Scholar

[11]

K. Ito and K. Kunisch, Optimal control of parabolic variational inequalities, J. Math. Pures Appl. (9), 93 (2010), 329-360.  doi: 10.1016/j.matpur.2009.10.005.  Google Scholar

[12]

E.-Y. Ju and J.-M. Jeong, Optimal control problems for nonlinear variational evolution inequalities, Abstr. Appl. Anal., (2013), 10pp. doi: 10.1155/2013/724190.  Google Scholar

[13] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics, 88, Academic Press, Inc., New York-London, 1980.   Google Scholar
[14]

N. N. Krasovski\u{i} and A. I. Subbotin, Game-Theoretical Control Problems, Springer Series in Soviet Mathematics, Springer-Verlag, New York, 1988.  Google Scholar

[15] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications, 74, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9781107340848.  Google Scholar
[16]

V. Maksimov, Feedback robust control for a parabolic variational inequality, in System Modeling and Optimization, IFIP Int. Fed. Inf. Process., 166, Kluwer Acad. Publ., Boston, MA, 2005,123–134. doi: 10.1007/0-387-23467-5_7.  Google Scholar

[17]

V. Maksimov, Some problems of guaranteed control of the Schlögl and FitzHugh–-Nagumo systems, Evol. Equ. Control Theory, 6 (2017), 559-586.  doi: 10.3934/eect.2017028.  Google Scholar

[18]

V. Maksimov and L. Pandolfi, The problem of dynamical reconstruction of Dirichlet boundary control in semilinear hyperbolic equation, J. Inverse Ill-Posed Probl., 8 (2000), 399-420.  doi: 10.1515/jiip.2000.8.4.399.  Google Scholar

[19]

V. I. Maksimov, Dynamical Inverse Problems of Distributed Systems, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002. doi: 10.1515/9783110944839.  Google Scholar

[20]

V. I. Maksimov, Feedback minimax control for parabolic variational inequality, C. R. Acad. Sci. Paris, Series IIB, 328 (2000), 105-108.  doi: 10.1016/S1287-4620(00)88424-0.  Google Scholar

[21]

V. Maksimov, Method of extremal shift in problems of reconstruction of an input for parabolic variational inequalities, in Analysis and Optimization of Differential Systems, Kluwer Acad. Publ., Boston, MA, 2003,259–268.  Google Scholar

[22]

F. Mignot and J.-P. Puel, Optimal control in some variational inequalities, SIAM J. Control Optim., 22 (1984), 466-476.  doi: 10.1137/0322028.  Google Scholar

[23]

L. Pandolfi, Adaptive recursive deconvolution and adaptive noise cancellation, Internat. J. Control., 80 (2007), 403-415.  doi: 10.1080/00207170601042346.  Google Scholar

[24]

L. Pandolfi, Distributed Systems with Persistent Memory. Control and Moment Problems, SpringerBriefs in Electrical and Computer Engineering, SpringerBriefs in Control, Automation and Robotics, Springer, Cham, 2014. doi: 10.1007/978-3-319-12247-2.  Google Scholar

[25]

A. A. Samarski\u{i}, Introduction to the Theory of Difference Schemes, Izdat. "Nauka", Moscow, 1971.  Google Scholar

[26] M. Sofonea and S. Migórski, Variational-Hemivariational Inequalities with Applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2018.   Google Scholar
[27]

D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems, Lecture Notes in Mathematics, 1459, Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0085564.  Google Scholar

[28]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Graduate Studies in Mathematics, 112, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/112.  Google Scholar

[29]

M. Tucshak and G. Weiss, Observation and Control For Operator Semigroups, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

show all references

References:
[1]

D. R. Adams and S. Lenhart, Optimal control of the obstacle for a parabolic variational inequality, J. Math. Anal. Appl., 268 (2002), 602-614.  doi: 10.1006/jmaa.2001.7833.  Google Scholar

[2]

B. AllecheV. D. Rădulescu and M. Sebaoui, The Tikhonov regularization for equilibrium problems and applications to quasi-hemivariational inequalities, Optim. Lett., 9 (2015), 483-503.  doi: 10.1007/s11590-014-0765-3.  Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976.  Google Scholar

[4]

V. Barbu, Optimal Control of Variational Inequalities, Research Notes in Mathematics, 100, Pitman (Advanced Publishing Program), Boston, MA, 1984.  Google Scholar

[5]

M. Bergounioux and H. Zidani, Pontryagin maximum principle for optimal control of variational inequalities, SIAM J. Control Optim., 37 (1999), 1273-1290.  doi: 10.1137/S0363012997328087.  Google Scholar

[6]

M. Boukrouche and D. A. Tarzia, Convergence of optimal control problems governed by second kind parabolic variational inequalities, J. Control Theory Appl., 11 (2013), 422-427.  doi: 10.1007/s11768-013-2155-2.  Google Scholar

[7]

H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9), 51 (1972), 1-168.   Google Scholar

[8] H. O. Fattorini, Infinite-Dimensional Optimization and Control Theory, Encyclopedia of Mathematics and its Applications, 62, Cambridge University Press, Cambridge, 1999.  doi: 10.1017/CBO9780511574795.  Google Scholar
[9]

A. V. Fursikov, Optimal Control of Distributed Systems. Theory and Applications, Translations of Mathematical Monographs, 187, American Mathematical Society, Providence, RI, 2000. doi: 10.1090/mmono/187.  Google Scholar

[10]

D. Goeleven and D. Motreanu, Variational and Hemivariational Inequalities: Theory, Methods and Applications. Vol. Ⅱ: Unilateral Problems, Nonconvex Optimization and its Applications, 70, Kluwer Academic Publishers, Boston, MA, 2003. doi: 10.1007/978-1-4419-8758-7.  Google Scholar

[11]

K. Ito and K. Kunisch, Optimal control of parabolic variational inequalities, J. Math. Pures Appl. (9), 93 (2010), 329-360.  doi: 10.1016/j.matpur.2009.10.005.  Google Scholar

[12]

E.-Y. Ju and J.-M. Jeong, Optimal control problems for nonlinear variational evolution inequalities, Abstr. Appl. Anal., (2013), 10pp. doi: 10.1155/2013/724190.  Google Scholar

[13] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics, 88, Academic Press, Inc., New York-London, 1980.   Google Scholar
[14]

N. N. Krasovski\u{i} and A. I. Subbotin, Game-Theoretical Control Problems, Springer Series in Soviet Mathematics, Springer-Verlag, New York, 1988.  Google Scholar

[15] I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems, Encyclopedia of Mathematics and its Applications, 74, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9781107340848.  Google Scholar
[16]

V. Maksimov, Feedback robust control for a parabolic variational inequality, in System Modeling and Optimization, IFIP Int. Fed. Inf. Process., 166, Kluwer Acad. Publ., Boston, MA, 2005,123–134. doi: 10.1007/0-387-23467-5_7.  Google Scholar

[17]

V. Maksimov, Some problems of guaranteed control of the Schlögl and FitzHugh–-Nagumo systems, Evol. Equ. Control Theory, 6 (2017), 559-586.  doi: 10.3934/eect.2017028.  Google Scholar

[18]

V. Maksimov and L. Pandolfi, The problem of dynamical reconstruction of Dirichlet boundary control in semilinear hyperbolic equation, J. Inverse Ill-Posed Probl., 8 (2000), 399-420.  doi: 10.1515/jiip.2000.8.4.399.  Google Scholar

[19]

V. I. Maksimov, Dynamical Inverse Problems of Distributed Systems, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002. doi: 10.1515/9783110944839.  Google Scholar

[20]

V. I. Maksimov, Feedback minimax control for parabolic variational inequality, C. R. Acad. Sci. Paris, Series IIB, 328 (2000), 105-108.  doi: 10.1016/S1287-4620(00)88424-0.  Google Scholar

[21]

V. Maksimov, Method of extremal shift in problems of reconstruction of an input for parabolic variational inequalities, in Analysis and Optimization of Differential Systems, Kluwer Acad. Publ., Boston, MA, 2003,259–268.  Google Scholar

[22]

F. Mignot and J.-P. Puel, Optimal control in some variational inequalities, SIAM J. Control Optim., 22 (1984), 466-476.  doi: 10.1137/0322028.  Google Scholar

[23]

L. Pandolfi, Adaptive recursive deconvolution and adaptive noise cancellation, Internat. J. Control., 80 (2007), 403-415.  doi: 10.1080/00207170601042346.  Google Scholar

[24]

L. Pandolfi, Distributed Systems with Persistent Memory. Control and Moment Problems, SpringerBriefs in Electrical and Computer Engineering, SpringerBriefs in Control, Automation and Robotics, Springer, Cham, 2014. doi: 10.1007/978-3-319-12247-2.  Google Scholar

[25]

A. A. Samarski\u{i}, Introduction to the Theory of Difference Schemes, Izdat. "Nauka", Moscow, 1971.  Google Scholar

[26] M. Sofonea and S. Migórski, Variational-Hemivariational Inequalities with Applications, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2018.   Google Scholar
[27]

D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems, Lecture Notes in Mathematics, 1459, Springer-Verlag, Berlin, 1990. doi: 10.1007/BFb0085564.  Google Scholar

[28]

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, Methods and Applications, Graduate Studies in Mathematics, 112, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/112.  Google Scholar

[29]

M. Tucshak and G. Weiss, Observation and Control For Operator Semigroups, Birkhäuser Advanced Texts: Basel Textbooks, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8994-9.  Google Scholar

[1]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[2]

Lori Badea, Marius Cocou. Approximation results and subspace correction algorithms for implicit variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1507-1524. doi: 10.3934/dcdss.2013.6.1507

[3]

Khalid Addi, Samir Adly, Hassan Saoud. Finite-time Lyapunov stability analysis of evolution variational inequalities. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1023-1038. doi: 10.3934/dcds.2011.31.1023

[4]

Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030

[5]

Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure & Applied Analysis, 2011, 10 (3) : 917-936. doi: 10.3934/cpaa.2011.10.917

[6]

Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101

[7]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021, 11 (3) : 479-498. doi: 10.3934/mcrf.2021009

[8]

Samir Adly, Tahar Haddad. On evolution quasi-variational inequalities and implicit state-dependent sweeping processes. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1791-1801. doi: 10.3934/dcdss.2020105

[9]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[10]

Peng Cheng, Feng Pan, Yanyan Yin, Song Wang. Probabilistic robust anti-disturbance control of uncertain systems. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2441-2450. doi: 10.3934/jimo.2020076

[11]

Peng Cheng, Yanqing Liu, Yanyan Yin, Song Wang, Feng Pan. Fuzzy event-triggered disturbance rejection control of nonlinear systems. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3297-3307. doi: 10.3934/jimo.2020119

[12]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[13]

Xavier Cabré, Manel Sanchón. Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian. Communications on Pure & Applied Analysis, 2007, 6 (1) : 43-67. doi: 10.3934/cpaa.2007.6.43

[14]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening. Networks & Heterogeneous Media, 2008, 3 (3) : 567-614. doi: 10.3934/nhm.2008.3.567

[15]

Matteo Bonforte, Gabriele Grillo. Singular evolution on maniforlds, their smoothing properties, and soboleve inequalities. Conference Publications, 2007, 2007 (Special) : 130-137. doi: 10.3934/proc.2007.2007.130

[16]

Shige Peng, Mingyu Xu. Constrained BSDEs, viscosity solutions of variational inequalities and their applications. Mathematical Control & Related Fields, 2013, 3 (2) : 233-244. doi: 10.3934/mcrf.2013.3.233

[17]

Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211

[18]

Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 4875-4890. doi: 10.3934/dcds.2013.33.4875

[19]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[20]

P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial & Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (109)
  • HTML views (147)
  • Cited by (0)

Other articles
by authors

[Back to Top]