doi: 10.3934/eect.2021059
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Controlled singular evolution equations and Pontryagin type maximum principle with applications

1. 

Department of Mathematics, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China

2. 

CITMAga, Universidade de Vigo, Departamento de Matemática Aplicada II, E. E. Aeronáutica e do Espazo, Campus de Ourense, Universidade de Vigo, Ourense 32004, Spain

3. 

Departamento de Estatística, Análisis Matemático e Optimización, Instituto de Matemáticas, CITMAga, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain

*Corresponding author: Xiao-Li Ding, dingding0605@126.com

Received  August 2020 Revised  August 2021 Early access December 2021

Fund Project: This work was supported by a key project of the International Science and Technology Cooperation Program of Shaanxi Research and Development Plan (2019KWZ-08). The work of J.J. Nieto has been partially supported by the Agencia Estatal de Investigacion (AEI) of Spain under Grant MTM2016-75140-P and co-financed by European Community fund FEDER and by Xunta de Galicia, grant ED431C 2019/02. This research was partially supported by the Portuguese Foundation for Science and Technology (FCT) within Project n. 147 Controlo Otimo e Modelacao Matematica da Pandemia COVID-19: contributos para uma estrategia sistemica de intervencao em saude na omunidade, in the scope of the RESEARCH 4 COVID-19 call financed by FCT; and by the Instituto de Salud Carlos III, within the Project COV20-00617 Prediccion dinamica de escenarios de afectacion por COVID-19 a corto y medio plazo (PREDICO), in the scope of the Fondo COVID financed by the Ministerio de Ciencia e Innovacion of Spain

Due to the propagation of new coronavirus (COVID-19) on the community, global researchers are concerned with how to minimize the impact of COVID-19 on the world. Mathematical models are effective tools that help to prevent and control this disease. This paper mainly focuses on the optimal control problems of an epidemic system governed by a class of singular evolution equations. The mild solutions of such equations of Riemann-Liouville or Caputo types are special cases of the proposed equations. We firstly discuss well-posedness in an appropriate functional space for such equations. In order to reduce the cost caused by control process and vaccines, and minimize the total number of susceptible people and infected people as much as possible, an optimal control problem of an epidemic system is presented. And then for associated control problem, we use a generalized Liapunov type theorem and the spike perturbation technique to obtain a Pontryagin type maximum principle for its optimal controls. In order to derive the maximum principle for an optimal control problems, some techniques from analytical semigroups are employed to overcome the difficulties. Finally, we discuss the potential applications.

Citation: Xiao-Li Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations & Control Theory, doi: 10.3934/eect.2021059
References:
[1]

M. S. AbdoK. ShahH. A. Wahash and S. K. Panchal, On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative, Chaos, Solitons Fractals, 135 (2020), 109867.  doi: 10.1016/j.chaos.2020.109867.  Google Scholar

[2]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynam., 38 (2004), 323-337.  doi: 10.1007/s11071-004-3764-6.  Google Scholar

[3]

O. P. AgrawalO. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables, J. Vib. Control, 16 (2010), 1967-1976.  doi: 10.1177/1077546309353361.  Google Scholar

[4]

A. AlsaediJ. J. Nieto and V. Venktesh, Fractional electrical circuits, Adv. in Mechanical Engineering, 7 (2015), 1-7.   Google Scholar

[5]

J. E. Anderson and H. F. Xu, Necessary and sufficient conditions for optimal offers in electricity markets, SIAM J. Control Optim., 41 (2002), 1212-1228.  doi: 10.1137/S0363012900367801.  Google Scholar

[6]

L. M. Betz, Second-order sufficient optimality conditions for optimal control of nonsmooth, semilinear parabolic equations, SIAM J. Control Optim., 57 (2019), 4033-4062.  doi: 10.1137/19M1239106.  Google Scholar

[7]

V. I. Bogachev, Measure Theory, I, Springer, New York, 2007. doi: 10.1007/978-3-540-34514-5.  Google Scholar

[8]

L. Bourdin, A class of fractional optimal control problems and fractional Pontryagin's system. Existence of a fractional Noether's theorem, preprint, arXiv: 1203.1422v1, 2012. Google Scholar

[9]

C. Burnap and M. A. Kazemi, Optimal control of a system governed by nonlinear Volterra integral equations with delay, IMA J. Math. Control Inform., 16 (1999), 73-89.  doi: 10.1093/imamci/16.1.73.  Google Scholar

[10]

D. A. Carlson, An elementay proof of the maximum principle for optimal control problems governed by a Volterra integral equation, J. Optim. Theory Appl., 54 (1987), 43-61.  doi: 10.1007/BF00940404.  Google Scholar

[11]

M. Dalir and N. Bigdeli, The design of a new hybrid controller for fractional-order uncertain chaotic systems with unknown time-varying delays, Applied Soft Computing, 87 (2020), 106000.  doi: 10.1016/j.asoc.2019.106000.  Google Scholar

[12]

C. De La Vega, Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation, J. Optim. Theory Appl., 130 (2006), 79-93.  doi: 10.1007/s10957-006-9087-7.  Google Scholar

[13]

X. L. Ding and Y. L. Jiang, Semilinear fractional differential equations based on a new integral operator approach, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 5143-5150.  doi: 10.1016/j.cnsns.2012.03.036.  Google Scholar

[14]

K. Du and Q. X. Meng, A maximum principle for optimal control of stochastic evolution equations, SIAM J. Control Optim., 51 (2013), 4343-4362.  doi: 10.1137/120882433.  Google Scholar

[15]

F. Dufour and B. Miller, Maximum principle for singular stochastic control problems, SIAM J. Control Optim., 45 (2006), 668-698.  doi: 10.1137/040612403.  Google Scholar

[16]

A. FarhadiG. H. Erjaee and M. Salehi, Derivation of a new Merton's optimal problem presented by fractional stochastic stock price and its applications, Comput. Math. Appl., 73 (2017), 2066-2075.  doi: 10.1016/j.camwa.2017.02.031.  Google Scholar

[17]

M. G. Hall and T. R. Barrick, From diffusion-weighted MRI to anomalous diffusion imaging, Magn. Reson. Med., 59 (2008), 447-455.  doi: 10.1002/mrm.21453.  Google Scholar

[18]

S. HeS. Tang and L. Rong, A discrete stochastic model of the COVID-19 outbreak: Forecast and control, Math. Biosci. Eng., 17 (2020), 2792-2804.  doi: 10.3934/mbe.2020153.  Google Scholar

[19]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981.  Google Scholar

[20]

M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic, Chaos, Solitons Fractals, 138 (2020), 110007.  doi: 10.1016/j.chaos.2020.110007.  Google Scholar

[21]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/9789812817747.  Google Scholar

[22]

R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 37 (2014), 1668-1686.  doi: 10.1002/mma.2928.  Google Scholar

[23]

R. Kamocki and M. Majewski, Fractional linear control systems with Caputo derivative and their optimization, Optim. Control Appl. Meth., 36 (2015), 953-967.  doi: 10.1002/oca.2150.  Google Scholar

[24]

S. H. A. KhoshnawM. ShahzadM. Ali and F. Sultan, A quantitative and qualitative analysis of the COVID-19 pandemic model, Chaos Solitons Fractals, 138 (2020), 109932.  doi: 10.1016/j.chaos.2020.109932.  Google Scholar

[25]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006.  Google Scholar

[26]

G. S. Ladde and L. Wu, Development of nonlinear stochastic models by using stock price data and basic statistics, Neutral Parallel Sci. Comput., 18 (2010), 269-282.   Google Scholar

[27]

X. J. Li and J. M. Yong, Necessary conditions for optimal control of distributed parameter systems, SIAM J. Control Optim., 29 (1991), 895-908.  doi: 10.1137/0329049.  Google Scholar

[28]

X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[29]

P. Lin and J. M. Yong, Controlled singular Volterra integral equations and Pontryagin maximum principle, SIAM J. Control Optim., 58 (2020), 136-164.  doi: 10.1137/19M124602X.  Google Scholar

[30]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.  Google Scholar

[31] F. Mainardi, Fractional Calculus and Waves In Linear Viscoelasticity, London, Imperial College Press, 2010.  doi: 10.1142/9781848163300.  Google Scholar
[32]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[33]

T. Y. MiyaokaS. Lenhart and J. F. C. A. Meyer, Optimal control of vaccination in a vector-borne reaction-diffusion model applied to Zika virus, J. Math. Biol., 79 (2019), 1077-1104.  doi: 10.1007/s00285-019-01390-z.  Google Scholar

[34]

F. NdaïrouI. AreaJ. J. Nieto and D. F. M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos, Solitons Fractals, 135 (2020), 109846.  doi: 10.1016/j.chaos.2020.109846.  Google Scholar

[35]

F. NdaïrouI. Area and J. J. Nieto, Fractional model of COVID-19 applied to Galicia, Spain and Portugal, Chaos, Solitons Fractals, 144 (2021), 110652.  doi: 10.1016/j.chaos.2021.110652.  Google Scholar

[36]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[37]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon Publishers, 1993.  Google Scholar

[38]

C. J. SilvaC. Cruz and D. F. M. Torres, Optimal control of the COVID-19 pandemic: Controlled sanitary deconfinement in Portugal, Scientific Reports, 11 (2021), 3451.  doi: 10.1038/s41598-021-83075-6.  Google Scholar

[39]

B. TangX. WangQ. LiN. L. BragazziS. TangY. Xiao and J. Wu, Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462.   Google Scholar

[40]

R. N. WangD. H. Chen and T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235.  doi: 10.1016/j.jde.2011.08.048.  Google Scholar

[41]

K. Yosida, Functional Analysis, 6$^{th}$ edition, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[42]

H. S. Zhang and X. Zhang, Second-order necessary conditions for stochastic optimal control problems, SIAM Rev., 60 (2018), 139-178.  doi: 10.1137/17M1148773.  Google Scholar

[43]

W. G. ZhouC. D. HuangM. Xiao and J. D. Cao, Hybrid tactics for bifurcation control in a fractional-order delayed predator-prey model, Phys. A, 515 (2019), 183-191.  doi: 10.1016/j.physa.2018.09.185.  Google Scholar

[44]

M. ZhouH. L. Xiang and Z. X. Li, Optimal control strategies for a reaction-diffusion epidemic system, Nonlinear Anal. Real World Appl., 46 (2019), 446-464.  doi: 10.1016/j.nonrwa.2018.09.023.  Google Scholar

show all references

References:
[1]

M. S. AbdoK. ShahH. A. Wahash and S. K. Panchal, On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative, Chaos, Solitons Fractals, 135 (2020), 109867.  doi: 10.1016/j.chaos.2020.109867.  Google Scholar

[2]

O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynam., 38 (2004), 323-337.  doi: 10.1007/s11071-004-3764-6.  Google Scholar

[3]

O. P. AgrawalO. Defterli and D. Baleanu, Fractional optimal control problems with several state and control variables, J. Vib. Control, 16 (2010), 1967-1976.  doi: 10.1177/1077546309353361.  Google Scholar

[4]

A. AlsaediJ. J. Nieto and V. Venktesh, Fractional electrical circuits, Adv. in Mechanical Engineering, 7 (2015), 1-7.   Google Scholar

[5]

J. E. Anderson and H. F. Xu, Necessary and sufficient conditions for optimal offers in electricity markets, SIAM J. Control Optim., 41 (2002), 1212-1228.  doi: 10.1137/S0363012900367801.  Google Scholar

[6]

L. M. Betz, Second-order sufficient optimality conditions for optimal control of nonsmooth, semilinear parabolic equations, SIAM J. Control Optim., 57 (2019), 4033-4062.  doi: 10.1137/19M1239106.  Google Scholar

[7]

V. I. Bogachev, Measure Theory, I, Springer, New York, 2007. doi: 10.1007/978-3-540-34514-5.  Google Scholar

[8]

L. Bourdin, A class of fractional optimal control problems and fractional Pontryagin's system. Existence of a fractional Noether's theorem, preprint, arXiv: 1203.1422v1, 2012. Google Scholar

[9]

C. Burnap and M. A. Kazemi, Optimal control of a system governed by nonlinear Volterra integral equations with delay, IMA J. Math. Control Inform., 16 (1999), 73-89.  doi: 10.1093/imamci/16.1.73.  Google Scholar

[10]

D. A. Carlson, An elementay proof of the maximum principle for optimal control problems governed by a Volterra integral equation, J. Optim. Theory Appl., 54 (1987), 43-61.  doi: 10.1007/BF00940404.  Google Scholar

[11]

M. Dalir and N. Bigdeli, The design of a new hybrid controller for fractional-order uncertain chaotic systems with unknown time-varying delays, Applied Soft Computing, 87 (2020), 106000.  doi: 10.1016/j.asoc.2019.106000.  Google Scholar

[12]

C. De La Vega, Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation, J. Optim. Theory Appl., 130 (2006), 79-93.  doi: 10.1007/s10957-006-9087-7.  Google Scholar

[13]

X. L. Ding and Y. L. Jiang, Semilinear fractional differential equations based on a new integral operator approach, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 5143-5150.  doi: 10.1016/j.cnsns.2012.03.036.  Google Scholar

[14]

K. Du and Q. X. Meng, A maximum principle for optimal control of stochastic evolution equations, SIAM J. Control Optim., 51 (2013), 4343-4362.  doi: 10.1137/120882433.  Google Scholar

[15]

F. Dufour and B. Miller, Maximum principle for singular stochastic control problems, SIAM J. Control Optim., 45 (2006), 668-698.  doi: 10.1137/040612403.  Google Scholar

[16]

A. FarhadiG. H. Erjaee and M. Salehi, Derivation of a new Merton's optimal problem presented by fractional stochastic stock price and its applications, Comput. Math. Appl., 73 (2017), 2066-2075.  doi: 10.1016/j.camwa.2017.02.031.  Google Scholar

[17]

M. G. Hall and T. R. Barrick, From diffusion-weighted MRI to anomalous diffusion imaging, Magn. Reson. Med., 59 (2008), 447-455.  doi: 10.1002/mrm.21453.  Google Scholar

[18]

S. HeS. Tang and L. Rong, A discrete stochastic model of the COVID-19 outbreak: Forecast and control, Math. Biosci. Eng., 17 (2020), 2792-2804.  doi: 10.3934/mbe.2020153.  Google Scholar

[19]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981.  Google Scholar

[20]

M. Higazy, Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic, Chaos, Solitons Fractals, 138 (2020), 110007.  doi: 10.1016/j.chaos.2020.110007.  Google Scholar

[21]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/9789812817747.  Google Scholar

[22]

R. Kamocki, Pontryagin maximum principle for fractional ordinary optimal control problems, Math. Methods Appl. Sci., 37 (2014), 1668-1686.  doi: 10.1002/mma.2928.  Google Scholar

[23]

R. Kamocki and M. Majewski, Fractional linear control systems with Caputo derivative and their optimization, Optim. Control Appl. Meth., 36 (2015), 953-967.  doi: 10.1002/oca.2150.  Google Scholar

[24]

S. H. A. KhoshnawM. ShahzadM. Ali and F. Sultan, A quantitative and qualitative analysis of the COVID-19 pandemic model, Chaos Solitons Fractals, 138 (2020), 109932.  doi: 10.1016/j.chaos.2020.109932.  Google Scholar

[25]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B. V., Amsterdam, 2006.  Google Scholar

[26]

G. S. Ladde and L. Wu, Development of nonlinear stochastic models by using stock price data and basic statistics, Neutral Parallel Sci. Comput., 18 (2010), 269-282.   Google Scholar

[27]

X. J. Li and J. M. Yong, Necessary conditions for optimal control of distributed parameter systems, SIAM J. Control Optim., 29 (1991), 895-908.  doi: 10.1137/0329049.  Google Scholar

[28]

X. J. Li and J. M. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[29]

P. Lin and J. M. Yong, Controlled singular Volterra integral equations and Pontryagin maximum principle, SIAM J. Control Optim., 58 (2020), 136-164.  doi: 10.1137/19M124602X.  Google Scholar

[30]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.  Google Scholar

[31] F. Mainardi, Fractional Calculus and Waves In Linear Viscoelasticity, London, Imperial College Press, 2010.  doi: 10.1142/9781848163300.  Google Scholar
[32]

R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.  doi: 10.1016/S0370-1573(00)00070-3.  Google Scholar

[33]

T. Y. MiyaokaS. Lenhart and J. F. C. A. Meyer, Optimal control of vaccination in a vector-borne reaction-diffusion model applied to Zika virus, J. Math. Biol., 79 (2019), 1077-1104.  doi: 10.1007/s00285-019-01390-z.  Google Scholar

[34]

F. NdaïrouI. AreaJ. J. Nieto and D. F. M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos, Solitons Fractals, 135 (2020), 109846.  doi: 10.1016/j.chaos.2020.109846.  Google Scholar

[35]

F. NdaïrouI. Area and J. J. Nieto, Fractional model of COVID-19 applied to Galicia, Spain and Portugal, Chaos, Solitons Fractals, 144 (2021), 110652.  doi: 10.1016/j.chaos.2021.110652.  Google Scholar

[36]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[37]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon Publishers, 1993.  Google Scholar

[38]

C. J. SilvaC. Cruz and D. F. M. Torres, Optimal control of the COVID-19 pandemic: Controlled sanitary deconfinement in Portugal, Scientific Reports, 11 (2021), 3451.  doi: 10.1038/s41598-021-83075-6.  Google Scholar

[39]

B. TangX. WangQ. LiN. L. BragazziS. TangY. Xiao and J. Wu, Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462.   Google Scholar

[40]

R. N. WangD. H. Chen and T. J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations, 252 (2012), 202-235.  doi: 10.1016/j.jde.2011.08.048.  Google Scholar

[41]

K. Yosida, Functional Analysis, 6$^{th}$ edition, Springer-Verlag, Berlin, 1995. doi: 10.1007/978-3-642-61859-8.  Google Scholar

[42]

H. S. Zhang and X. Zhang, Second-order necessary conditions for stochastic optimal control problems, SIAM Rev., 60 (2018), 139-178.  doi: 10.1137/17M1148773.  Google Scholar

[43]

W. G. ZhouC. D. HuangM. Xiao and J. D. Cao, Hybrid tactics for bifurcation control in a fractional-order delayed predator-prey model, Phys. A, 515 (2019), 183-191.  doi: 10.1016/j.physa.2018.09.185.  Google Scholar

[44]

M. ZhouH. L. Xiang and Z. X. Li, Optimal control strategies for a reaction-diffusion epidemic system, Nonlinear Anal. Real World Appl., 46 (2019), 446-464.  doi: 10.1016/j.nonrwa.2018.09.023.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[3]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[4]

Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2021, 10 (4) : 701-722. doi: 10.3934/eect.2020087

[5]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[6]

Chiun-Chuan Chen, Li-Chang Hung. An N-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1503-1521. doi: 10.3934/dcdsb.2018054

[7]

Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control & Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021

[8]

N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1011-1029. doi: 10.3934/dcdss.2018059

[9]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[10]

Gaocheng Yue. Attractors for non-autonomous reaction-diffusion equations with fractional diffusion in locally uniform spaces. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1645-1671. doi: 10.3934/dcdsb.2017079

[11]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[12]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[13]

Angelo Favini, Atsushi Yagi. Global existence for Laplace reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (5) : 1473-1493. doi: 10.3934/dcdss.2020083

[14]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005

[15]

Heather Finotti, Suzanne Lenhart, Tuoc Van Phan. Optimal control of advective direction in reaction-diffusion population models. Evolution Equations & Control Theory, 2012, 1 (1) : 81-107. doi: 10.3934/eect.2012.1.81

[16]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19

[17]

Peter E. Kloeden, Thomas Lorenz, Meihua Yang. Reaction-diffusion equations with a switched--off reaction zone. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1907-1933. doi: 10.3934/cpaa.2014.13.1907

[18]

Goro Akagi, Jun Kobayashi, Mitsuharu Ôtani. Principle of symmetric criticality and evolution equations. Conference Publications, 2003, 2003 (Special) : 1-10. doi: 10.3934/proc.2003.2003.1

[19]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[20]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

2020 Impact Factor: 1.081

Metrics

  • PDF downloads (87)
  • HTML views (46)
  • Cited by (0)

Other articles
by authors

[Back to Top]